Trading API & Market Data API
Interface Specifications

Version: 2.00
Document Release Date: 20250912

Trading API & Market Data API Interface Specifications v2.00

I. Revision Records, Approval Records and Audit Records
Revision Records

Version No. Date of Revision Major Revisions
Version: 2.00 20250829
Approval Records
Approving Officers Department (Unit) Date of Approval
Audit Records
Auditors Department (Unit) Date of Audit

Trading API & Market Data API Interface Specifications v2.00

Table of contents

Part I Introduction to NGES Trading System Interface 1
1. Introduction 2
1.1, BaCK@rOUNAcccviiiieiiciieieeeeeee ettt ettt ettt et e b e et e e beessaessaessaessaessaens 2

1.2, TraderAPT OVETVIEWooviiieiieiieiteiteee ettt et eneas 2

1.3, MAUSETAPL OVEIVIEW ...coueiiiieiiieieeiieeite ettt ettt ettt sttt st e sate st e sneeenes 3

1.4. Platforms Supported by TraderAPI/MdUserAPIcccoeevveeriiviiiriieieeeeeeeieeiens 3

1.5, COMNLACT ..ttt ettt st st sttt st 4

1.6. Version HiStOTYccoueeiuiiiieniieiieeiieeieet ettt ettt ettt st et sateeaae s 4
1.6.1. VErSion V2.00ooouiiiiiiiiieeie ettt sttt sttt e bt e st e b e st e sseeseeens 4

2. FTD Architecture S
2.1. Communication MOMEcceruieieiiiieiieiee ettt 5

2.2. DAta FIOWS ..cetiiiieitieitieetieeiesi ettt ettt ettt et e st e st e bt e bt e bt e sbeesbeebeebeenseeseenseeseans 6

3. Interface Mode 8
3.1, TraderAPT INtEITACEcccueeiieieeie ettt ettt 8
3.1.1. Dialog Stream and Query Stream Programming Interface........c...cccocevevrennnns 8

3.1.2. Private Stream Programming Interfacec.ccevvveviveciieciieciinciinieeie e 9

3.1.3. Public Stream Programming Interface............ccoocvriiirienieniiiiiiceceeeeee, 9

3.2. MAUSETAPI INtETTACEc.eeivieeieieie ettt 9
3.2.1. Dialog Stream Programming Interfaceccccoeevveveeieecienciiniiniecie e, 9

3.2.2. Market Data Stream Programming Interface...........cccoceeveeneeiienvinnnneeennn, 10

4. Operating Mode 11
A1 WOTKEIOW <.ttt et ettt ettt ee e e steebeeneaneens 11
4.1.1. Initialization Phaseccoceriiiiiiiieeee s 11

4.1.2. Function Calling Phase............cceeviiviiiiieiieiiciecie e 11

4.2. Working THIeadcooouieiiiiieiieii ettt ettt et 11

4.3. Connection with the Trading SyStemcceevieriiriiriirieiieecee e 12

4.4. Interaction Between TraderAPI and the Trading Front-end..........c..ccceevvrvervrnnnnnee. 13

4.5. Interaction Between MduserAPI and the Market Data Front-end............ccccoeuenenee. 15

4.6, LOCAl FALES ...ttt ettt et ettt ettt 16

4.7. Request and Response Log Files.......coooiiiiiiiiiiieiieiieieee et 17

4.8. Subscription Methods for Reliable Data Streamccccceeevveeieviieneeneeieieeieen 17
4.8.1. Re-Transmission Sequence ID Maintained by API..........cccoociviiiinnnnnnne 17

4.8.2. Re-Transmission Sequence ID Managed by Member End System............... 18

4.9. Heartbeat MEeChaniSIMc..ceiuiiiiiiieiiiiieriie sttt sttt s 19
4.10. Disaster RecoVery INterfacecccvevierierieiierieseeseeseeseese e seeesee e seeeseee s 19
Part II TraderAPI Reference Manual 21
1. Categories of TraderAPI Interfaces 22
1.1. Management INteTfacescccueeoieeiiiiiiiieie ettt e 22

1.2, Service INtETTACESceeieeieieieieete ettt 22

2. TraderAPIInterface Description 27
2.1. CShfeFtdcTraderSpilnterfaceooierieriiiieiieeeee e 27
2.1.1. OnFrontConnected Methodcooievierieiieiieieeeeeee e 27

2.1.2. OnFrontDisconnected Methodcccoerieiiiiiniiieeeeeee e 27

Trading API & Market Data API Interface Specifications v2.00

2.1.3. OnHeartBeatWarning Method.............cccoviiniiniiniinieeeeeeeeeeeen 27
2.1.4. OnPackageStart Methodcccoeoiiriiiiiniiiie et 28
2.1.5. OnPackageEnd Method..........cccceviiiiiniieiieieieeeeeeeseese e 28
2.1.6. OnRspUserLogin Methodcoecvieiiiiiiiiiieiie e 28
2.1.7. OnRspUserLogout Method...........cocceviiriieiiiiiieieeieee et 30
2.1.8. OnRspUserPasswordUpdate Method............coceeeieiiiiiniiiiiececeecee 31
2.1.9. OnRspSubscribeTopic Method..........ccveviieviieiieiieiicieeeeeeeee e 32
2.1.10. OnRspQryTopic Method........c.cccvviieiieiieiieiecieeie et 32
2.1.11. OnRSPEIror Methodcoeiiiiiiiiiiieieee et 33
2.1.12. OnRspOrderInsert Methodccoooiriiiriiiiiiieieeeeee e 34
2.1.13. OnRspOrderAction Methodcceevvieviieviieiieiieiecie e 37
2.1.14. OnRspQuotelnsert Method...........ccccevieviieciienieiieecieee e 40
2.1.15. OnRspQuoteAction Method..........ccveviieviierienierieeeeeeeeee e 42
2.1.16. OnRspExecOrderInsert Method............ccoevieriiiiiiiiiiiiieeeeeee e 44
2.1.17. OnRspExecOrderAction Method...........cccceveviniiniieieeieciecieeeere e 46
2.1.18. OnRspQryPartAccount Method.........c.cccvveeiieiiniiniieiecie e 48
2.1.19. OnRspQryOrder Methodcccoviiriiiiiiiiiieieeieeeee e 49
2.1.20. OnRspQryQuote Method..........ccooueeieriiiiiriieieeeeeee e 51
2.1.21. OnRspQryTrade Method........c.cccvevieiieiieiieiieieeie e 53
2.1.22. OnRspQryClient Method.........c.ccceviiriiiieiiiiie et 55
2.1.23. OnRspQryPartPosition Methodccccoeeiiiiiiiiiiiiiiiieeee e, 56
2.1.24. OnRspQryClientPosition Method..........ccoceeiiriiiiiiniiieieceeeeee e 57
2.1.25. OnRspQrylnstrument Method..........cccoviirieiiiiiiniiieeeeeeeeeeee 59
2.1.26. OnRspQryInstrumentStatus Method..........cccevvevienienienienieseeceeeeeeenn 60
2.1.27. OnRspQryBulletin Method..........ccoevvieviiiiiieiiciieiecieee e 61
2.1.28. OnRspQryMarketData Method..........cccoooieriiniiniiniinieeeeeeeee, 62
2.1.29. OnRspQryHedgeVolume Method...........cccceeviieiiiniinieiieieeeeee e 64
2.1.30. OnRtnTrade Methodcccoviiieieiieieeee e 65
2.1.31. OnRtnOrder Methodc.ooiuieiiiiiiiiiiieeeeeee et 66
2.1.32. OnRtnQuote Methodc.cccviiiiiiiiiieieee e e 68
2.1.33. OnRtnExecOrder Methodcccoiieiiiieiiiieeee e 69
2.1.34. OnRtnInstrumentStatus Methodcooceiiiiiiiieniieeeeeeee, 71
2.1.35. OnRtnlnsInstrument Methodcccceiiiiiiiiiiiieee e 71
2.1.36. OnRtnBulletin Methodcooieiiiiiiiiiiieieeeeeeeee e 72
2.1.37. OnRtnFlowMessageCancel Method............cocceevieiiiiiiiienieiiececeeee 73
2.1.38. OnErrRtnOrderInsert Method............coooieiieirieniiieeeeeee e 73
2.1.39. OnErrRtnOrderAction Methodccoeieieiiinieieieeeee e 76
2.1.40. OnErrRtnQuotelnsert Method...........cceeeviieiiiieeiieiicceeceeceeeee e 78
2.1.41. OnErrRtnQuoteAction Methodccovieiiieiiiieiiiiieeeeee e 81
2.1.42. OnErrRtnExecOrderInsert Method..........coovvieiiiinieieeneeeeeeeee 82
2.1.43. OnErrRtnExecOrderAction Method..........oooeiiiiiinieiineeeeecee 84
2.1.44. OnRspQryExecOrder Method..........cccoiierieniiiiiniiieieeeeeeeee e 86
2.1.45. OnRspQryExchangeRate Method...........cccooeeiiiiieiieiieieeeeeeeeeen 87
2.1.46. OnRspAbandonExecOrderInsert Method...........cccceeeveeviieciieciieieeieeieee, 88
2.1.47. OnRspAbandonExecOrderAction Method...........ccceevveviieviieciieniicieeieeene, 90
2.1.48. OnRspQryAbandonExecOrder Method...........coccoveiieiiiniiieiiiiiiiiieieeieee 92

II

Trading API & Market Data API Interface Specifications v2.00

2.1.49. OnRtnAbandonExecOrder Method...........cccooieiiieniiniiiieieieceeeee 93
2.1.50. OnErrRtnAbandonExecOrderInsert Method..........ccccooevviiviiniiniinieeeen, 95
2.1.51. OnErrRtnAbandonExecOrderAction Method.........cocceceverieieiininieeee 96
2.1.52. OnRspQuoteDemand Method............ccceevieviinienieniienierieseesee e 98
2.1.53. OnRtnQuoteDemandNotify Method..........ccoveevieniiniiniiniinieeeeeeee, 99
2.1.54. OnRspOptionSelfCloseUpdate Method.........ccceveeviinieniinienienienieee, 100
2.1.55. OnErrRtnOptionSelfCloseUpdate Method...........ccceevveviriinciencieeieereen, 102
2.1.56. OnRtnOptionSelfCloseUpdate Methodcccvevvveviieviienieniienieieerieeniens 103
2.1.57. OnRspOptionSelfCloseAction Method...........cocceeveereineinienieiieeeeee. 104
2.1.58. OnErrRtnOptionSelfCloseAction Method..........cceveeeieiiiniiniiniiiieee, 106
2.1.59. OnRspQryOptionSelfClose Method.........ccccevvvvieiieeieniecieciecre e 107
2.1.60. OnRspAuthenticate Method..........ccoccveviiiiinienierieriecee e 109
2.2. CShfeFtdcTraderApi INtErfacesccvvievvieiieiieiieieee ettt 110
2.2.1. CreateFtdcTrader Api Methodccooceeviiniiiiiiieeeeee e 110
2.2.2. GetVersion Method.........cccueiiiiiiiriiiieeere e 110
2.2.3. Release Methodcoeeieriiiuieieieie e 110
2.2.4. In1t MELhOQoeieiieiieieiececeee ettt ettt ae e 111
2.2.5.J0IN MEthOQcuiiiiiiiiiii ettt 111
2.2.6. GetTradingDay Method..........ccccvevvieviieriieiieiicieee e 111
2.2.7. RegisterSpi Methodccviiieeiiiiiiieciecie ettt 111
2.2.8. RegisterFront Methodcooieiiiiiiiiiiiee e 112
2.2.9. RegisterNameServer Method............ccooiiiiiiiiiiiiiiiieeeeee e 112
2.2.10. SetHeartbeatTimeout Methodccooceviiiiiiiiiiiie e 112
2.2.11. OpenRequestLog Methodccceevverieriiniiniecieceeceeseesee e 113
2.2.12. OpenResponseLog Methodc.cccvveeiieiiiiiiiiciecccrecreee e 113
2.2.13. SubscribePrivateTopic Method...........ccoeciiiiiiiiiiiiieieceeeeee e 113
2.2.14. SubscribePublicTopic Method...........ccoooieiiiiiiiiiiieeeeeeeeeee 114
2.2.15. SubscribeUserTopic Method..........c.cccuvveviriiiiinieiiecieerecreere e 114
2.2.16. ReqUserLogin Method...........cooieiiiriiinieniieiieeeeeeee e 115
2.2.17. ReqUserLogout Method..........ccccoiiiiiirieiiiiieeeeeeeeeeeee e 116
2.2.18. ReqUserPasswordUpdate Method............ccoeevveiieieeiiiiiieieeieerceieeee s 116
2.2.19. ReqSubscribeTopic Method.........ccevviiiiiieiiicierieciecee e 117
2.2.20. ReqQryTopic Methodccoecviviiiiieiieieciecie et 118
2.2.21. ReqOrderInsert Methodccceevierienieinieniieiieieeeee e 118
2.2.22. ReqOrderAction Method..........cccoiiiiiiiiinierieeeeeeeeeeeeeeee e 120
2.2.23. ReqQuotelnsert Methodcccvevieriinieriieieseeseeseeeeee e 121
2.2.24. ReqQuote Action Method........ccceovveiiierieniieiieieceeeee e 122
2.2.25. ReqExecOrderInsert Methodccccoeveeiieiiieiiieieeieeie e 123
2.2.26. ReqExecOrderAction Methodcccoevieiiiiiiiiiiiieeeeeeeee e 124
2.2.27. ReqQryPartAccount Method..........c.cccuveiiviiiiinieeie e 125
2.2.28. ReqQryOrder Methodc.cccveviiiiiiieiieiicieee e 126
2.2.29. ReqQryQuote Method.........ceeiuieiiieiiieiieieeieee et 127
2.2.30. ReqQryTrade Methodccoceviiriiiiiiiieceeee e 127
2.2.31. ReqQryClient Method.........c.ccoveviiiviieiieiiciieeere et eve e 128
2.2.32. ReqQryPartPosition Methodc.cccevviriiiiiiiiniiiiecie e 129
2.2.33. ReqQryClientPosition Method..........ccceceeiieiieiieiieieeieeeee e 129

I

Trading API & Market Data API Interface Specifications v2.00

2.2.34. ReqQryInstrument Method...........ccccoeieiiiiiiiiiniiiieeeee e 130
2.2.35. ReqQrylnstrumentStatus Methodccccoveiiiiiiiiiiiiiieee e 131
2.2.36. ReqQryMarketData Methodcccveevieiiniiiiiniicie e 131
2.2.37. ReqQryBulletin Method..........cccvoviiviiinieniienieieeeeeeeseeee e 132
2.2.38. ReqQryHedgeVolume Method..........cccooeeviiniiniiniiieeeeceeee, 132
2.2.39. ReqQryExecOrder Method...........coceviiiiiiiiniiiieeieeeeeee e 133
2.2.40. ReqQryExchangeRate Method..........cccovvvevieiienienieieieceeceece e 134
2.2.41. ReqAbandonExecOrderInsert Method............ccovevveviierieenienieieieieeiens 134
2.2.42. ReqAbandonExecOrderAction Method..........ccooeevienienienienienienieee, 135
2.2.43. ReqQryAbandonExecOrder Method...........ccocovviiiiiiiiniiniiiececeee, 136
2.2.44. ReqQuoteDemand Methodc.cccvvviieiiiiiiiinieciecreceee e 137
2.2.45. ReqOptionSelfCloseUpdate Method..........c.ccvveieeciieiieciieieciece e, 138
2.2.46. ReqOptionSelfClose Action Methodcccocvevieiiencienciicieciecee e 139
2.2.47. ReqQryOptionSelfClose Method..........ccccerieiiiniinienieeeeeeeeee 140
2.2.48. ReqAuthenticate Methodccoccveviiiriiinienieieieieseeseese e 141

3. TraderAPI Interface Development Instances 141
Part III MduserAPI Reference Manual 146
1. Categories of MduserAPI Interfaces 147
1.1. Management INterfacesccevcveriiriiiiiiiiecie ettt ste e raeraens 147
1.2, ServiCe INtETTACESeeeeeeeeieieie ettt 147
2. MduserAPI Interface Description 149
2.1. CShfeFtdcMduserSpi INterfacecocuveieeiieiieeiieeeeetee e 149
2.1.1. OnFrontConnected Method...........ccoceeeiiiiiiiiiiiiieeceee e 149
2.1.2. OnFrontDisconnected Methodcccooeeieiiiiiieiinieeee e 149
2.1.3. OnHeartBeatWarning Method.............cceeevieviieiiiiieeiiciececreeeee e 149
2.1.4. OnPackageStart Methodcocovieiiiriiniinieee e 150
2.1.5. OnPackageEnd Methodcccoeiiiiiiiiieiiieiee e 150
2.1.6. OnRspUserLogin Method..........cccvecvieiieriieniieniieieeieeceieee e 150
2.1.7. OnRspUserLogout Method...........ccceviiriiriinienieierierterteeeee e 152
2.1.8. OnRspSubscribeTopic Method..........ccoviiriiiiiiiiiiiieecee e 152
2.1.9. OnRspQryTopic Method..........covvevieiieiiinieieieeeeese e 153
2.1.10. ONRSPEITOr Methodcccvevieiiiiieiieciecie ettt 154
2.1.11. OnRtnDepthMarketData Methodcccccvevierierienieniesieseereereeeeeens 154
2.1.12. OnRtnFlowMessageCancel Methodccoceviiiiiniiniiniicceee, 156
2.1.13. OnRspUserPasswordUpdate Method.............coecveeiiiiininiiiiiiieeieeee 157

2.2. CShfeFtdcMduserApi INterfacesccvevierierierieierieseeseeee e 158
2.2.1. CreateFtdcMduserApi Method..........c.cccvvevieiieiiniicie e 158
2.2.2. GetVersion Method..........ocooiiiiiiiiiiiieee e 158
2.2.3. Release Methodcocuieiieiiiiieieeieeie ettt 159
224, Init MEthOd ..o 159
2.2.5.J0I0 MEthO ... 159
2.2.6. GetTradingDay Method..........cooceeiieiiiiiieiieeeeee e 159
2.2.7. RegisterSpi Methodcoooviiiiiiiiiieieeeeeeee et 159
2.2.8. RegisterFront Methodccocveviiiiiiiiciiciecie e 160
2.2.9. RegisterNameServer Method...........cccovveviiiiiniiiieiieciecee e 160
2.2.10. SetHeartbeatTimeout Methodccoociviiriiiiiiiiiieee e 161

Trading API & Market Data API Interface Specifications v2.00

2.2.11. OpenRequestLog Methodccovieiiiiiiniiniieeeee e 161
2.2.12. OpenResponseLog Method.........ccocieiiiiiiiiiiiiiiieeceeeeee e 161
2.2.13. SubscribeMarketDataTopic Method...........ccceeveeiiriinieniieiiecieeiecieens 162
2.2.14. ReqUserLogin Methodccoveviiiriieniieniieiieeeieeieee et 162
2.2.15. ReqUserLogout Method..........cccoeiiiiiiniiiieiieieeeeeeee e 163
2.2.16. ReqSubscribeTopic Method..........cooiiviiniiniiiiecieeeeeeeeeee e 163
2.2.17. ReqQryTopic Methodccoccveiiiiiieieciicieeie e 164
2.2.18. ReqUserPasswordUpdate Method............ccoeevveiieieeiiiiiieieeieerceieeee s 165
3. MduserAPI Interface Development Instance 166
Part IV Appendix 168
1. Error ID List 168
2. Enumeration Value List 172
3. Data Type List 176
4. API Return Value List 178

Trading API & Market Data API Interface Specifications v2.00

Part I Introduction to NGES Trading System Interface

Chapter 1 gives you an introduction to the two main APIs for the NGES Trading
System—TraderAPI and MduserAPI. TraderAPI is designed for Member System to send
instructions for trading and query, and to receive private stream, public stream, dialog stream
and query stream; MduserAPI is designed for Member System and Market Data Vendor
System to receive market data stream.

Chapter 2 introduces the Futures Trading Data (FTD) Exchange Protocol behind the
two APIs, with a focus on illustration of data stream.

Chapter 3 introduces the programming interfaces of the two APIs with respect to
different types of applications.

Chapter 4 introduces the operating mode of the two APIs, including inter-thread
communication, heartbeat mechanisms, and transmission mechanisms of reliable data stream.

Trading API & Market Data API Interface Specifications v2.00

1. Introduction

1.1. Background

Under the unified leadership of the China Securities Regulatory Commission (CSRC),
Shanghai Futures Exchange (SHFE), Zhengzhou Commodity Exchange (ZCE) and Dalian
Commodity Exchange (DCE) jointly studied and developed the Futures Trading Data
Exchange Protocol (i.e. FTD or FTD Protocol). The CSRC officially released the FTD
Protocol (JR/T 0016-2004) on 25th March, 2005, and implemented it as an industry standard
ever since.

The NGES Trading System intrinsically uses the FTD Protocol as the access protocol
for Exchange Member’s remote trading. The FTD Protocol is relatively complex. In order to
reduce the difficulty level of developing Exchange Member’s remote Trading Systems and
improve the reliability level of the Trading Systems, SHFE released a trading API
(TraderAPI) and a market data API (MduserAPI) for the NGES Trading System.

The Member Systems call the TraderAPI to connect to the NGES Trading System, send
request instructions, and receive responses or returns, after which the TraderAPI calls back
the Member Systems. Similarly, the Member Systems or the Market Data Vendor Systems
call the MduserAPI to dock with the NGES Trading System and receive market data, after
which the MduserAPI calls back the Market Data Receiving Systems.

The systems used by Exchange Members and Market Data Vendors to receive the
Exchange’s market data are collectively termed the Market Data Receiving Systems. Both
Member Systems and Market Data Receiving Systems are referred to as Member-End or
Member-End Systems.

The TraderAPI encapsulates the complex protocol conversion, data synchronization and
network communication between Member Systems and the NGES Trading System. Operating
over TCP protocol, the TraderAPI establishes a virtual link communication channel with the
trading front-end processor of the NGES Trading System, enabling trading and query
operations for the Member Systems. The connection channel established via TraderAPI is
characterized by its multi-address registration, automatic reconnection and trading data auto-
retransmission, etc.

Similar to TraderAPI, MduserAPI will establish a TCP-based virtual link channel to
connect to the NGES Trading System’s market data front-end, enabling subscription to and
reception of market data.

1.2. TraderAPI Overview

TraderAPI is a C++-based class library that enables trading functionalities by utilizing
and extending its provided interfaces. These functionalities include: order and quote entry,
order and quote cancellation, submission of option exercise and option abandonment,
cancellation of option exercise and option abandonment, request for quote, fund query, order
and quote request, trade report query, client information query, member position query,
clients position query, contract query, and contract trading status query.

The Windows platform class library supports Windows32 and includes the following five
files:

Trading API & Market Data API Interface Specifications v2.00

File Name File Description

FtdcTraderApi.h Trading API header file
FtdcUserApiStruct.h Data structures header files
FtdcUserApiDataType.h Data types header files

ftdtraderapi.dll Dynamic-link library (DLL) binary file
ftdtraderapi.lib Import library (.Lib) file

It is recommended to use Visual Studio 2017 or later versions of the compiler.
The Linux-like platform class library supports RHEL7 and Kylin V10, and includes the

following four files:

File Name File Description

FtdcTraderApi.h Trading API header file
FtdcUserApiStruct.h Data structures header files
FtdcUserApiDataType.h Data types header files
libftdtraderapi.so Dynamic-link library (DLL) binary file

1.3. MduserAPI Overview

MduserAPI is also a C++ based class library that enables market data subscription and
reception functionalities through utilizing and extending its provided interfaces.

The Windows platform class library supports Windows32 and includes the following

five files:
File Name File Description
FtdcMduserApi.h Market data API header file
FtdcUserApiStruct.h Data structures header files
FtdcUserApiDataType.h Data types header files
ftdmdapi.dll Dynamic-link library (DLL) binary file
ftdmdapi.lib Import library (.Lib) file

It is recommended to use Visual Studio 2017 or later versions of the compiler.
The Linux-like platform class library supports RHEL7 and Kylin V10, and includes the
following four files:

File Name File Description

FtdcMduserApi.h Market data API header file
FtdcUserApiStruct.h Data structures header files
FtdcUserApiDataType.h Data types header files

libftdmdapi.so Dynamic-link library (DLL) binary file

1.4. Platforms Supported by Trader API/MduserAPI

Trading API & Market Data API Interface Specifications v2.00

Currently, the following platforms are supported:
ARM64/KylinV10: including .h files and .so files
X86-64/KylinV10: including .h files and .so files
X86-64/RHEL7: including .h files and .so files
X86/Windows32: including .h files, .dll files, and .lib files

1.5. Contact

Tel: +86-021-68400802
E-mail: tech@shfe.com.cn

1.6. Version History

1.6.1. Version v2.00

The main changes in this version compared to API 1.0 are as follows:

The following function interfaces have been removed in this version:

Traderapi: removed ReqAdminOrderInsert and OnRspAdminOrderInsert
interfaces.

Traderapi: removed ReqQryMBLMarketData and
OnRspQryMBLMarketData interfaces.

Traderapi: removed RegisterCertificateFile interface.

Traderapi: removed RegisterGM CertificateFile interface.

Traderapi: removed OnRtnAliasDefine interface.

Traderapi: removed ReqCombOrderInsert, OnRspCombOrderlnsert,
ReqQryCombOrder, OnRspQryCombOrder, OnRtnCombOrder,
OnErrRtnCombOrderInsert, OnRtnInsCombinationLeg, and
OnRtnDelCombinationLeg interfaces.

Traderapi: removed ReqQrylInformation and OnRspQrylnformation
interfaces.

Traderapi: removed OnRtnDellnstrument interface.

Traderapi: removed ReqQryCreditLimit and OnRspQryCreditLimit
interfaces.

Traderapi: removed RegisterCryptAlgorithm interface.

MDuserapi: removed RegisterCertificateFile interface.

MDuserapi: removed RegisterGMCertificateFile interface.

MDuserapi: removed RegisterCryptAlgorithm interface.

The following function interfaces have been added in this version:

MDuserAPI: added “User Password Update Request” interface, cf. [Part 11,
2.2.18: ReqUserPasswordUpdate Method].

MDuserAPI: added “Opening Request Log File” and “Opening Response
Log File” interfaces, cf. [Part III, 2.2.11 OpenRequestLog Method and
2.2.12 OpenResponseLog Method].

mailto:tech@shfe.com.cn

Trading API & Market Data API Interface Specifications v2.00

® The following function interfaces have been modified in this version:
u TraderAPI: RegisterFront and RegisterNameServer interfaces have been
updated, with the parameter type changed from char* to const char*, cf.
[Part II, 2.2.8 RegisterFront Method and 2.2.9 RegisterNameServer Method].
u MduserAPI: RegisterFront and RegisterNameServer interfaces have been
updated with the parameter type has changed from char* to const char*, cf.
[Part III, 2.2.8 RegisterFront Method and 2.2.9 RegisterNameServer
Method].
® The following function return values and error reasons have been added in this
version:
u TraderAPI and MduserAPI: added return values for request interfaces in, cf.
[Part IV “API Return Value List”].
u TraderAPI: updated and expanded the API disconnection reasons, cf. [Part
I, 2.1.2 OnFrontDisconnected Method].
u MduserAPI: updated and expanded the API disconnection reasons, cf. [Part
111, 2.1.2 OnFrontDisconnected Method].
® The following enumeration values have been added in this version:
u ProductClass additions: SHFE FTDC PC Spread.

u HedgeFlag additions: SHFE FTDC HF None.
u OffsetFlag additions: SHFE FTDC OF None.
u TradeType additions: SHFE FTDC TRDT SpreadDerived.
u PriceSource additions: SHFE FTDC PSRC Imply.
2. FTD Architecture

2.1. Communication Mode

All communications in the FTD Protocol are based on specific communication modes.
Essentially, a communication mode defines the coordination mechanism between
communicating parties.

The FTD protocol supports three communication modes:

® Dialog Mode

® Private Mode

® Public Mode (i.c. the Broadcast Communication Mode in API 1.0)

Dialog Mode

The Member System initiates communication requests which are received, processed and
responded by the Trading System. Typical operations include order entry and information
queries. This mode follows the standard client/server architecture.

Private Mode

The Trading System actively pushed messages to specific members or their designated
traders based on subscription requests initiated by the Member Systems. Instances include
execution reports and market data notifications.

Public Mode

The Trading System broadcast identical messages to all members. Instances include

Trading API & Market Data API Interface Specifications v2.00

public announcements and market-wide information.

Communication modes and network connections don’t maintain simple one-to-one
relationships. To be specific, a single network connection may carry messages sent in
multiple communication modes, while messages sent in one communication mode can also be
transmitted across multiple network connections.

All communication modes follow the process shown in Figure 1:

Member The Trading
System System

Connection Request

k—— Connection Acknowlegement

Authentication Request

Kk——— Authentication Response

Initiate Request (Dialog Mode) —— 3

<—— Return Response (Dialog Mode)

k—— Distribute Private Message (Private Mode)

«— Broadcast Market-Wide Announcement (Public Mode) —

Disconnection Request

Kk—— Disconnection Acknowlegement

Figture 1: Message Flow Diagrams for All Communication Modes

2.2. Data Flows

The Trading Front-end supports Dialog Mode, Private Mode, and Public Mode, while

Trading API & Market Data API Interface Specifications v2.00

the Market Data Front-end supports only Dialog Mode and Private Mode.

1) Dialog Mode

The Dialog Mode is bidirectional, supporting both dialog data flows (referred to as
DialogFlows) and query data flows (referred to as QueryFlows).

The Member System sends a trading request or query request, and the Trading System
returns a response. No state is maintained for DialogFlows or QueryFlows. In the event of a
system failure, both streams will be reset, and in-transit data may be lost.

2) Private Communication Mode

Private Communication Mode is unidirectional and supports member’s private streams,
trader’s private streams, and market data topic streams (referred to as market data streams).

In Private Communication Mode, the data streams are reliable, and the Trading System
maintains the private or market data streams across the entire system. Within a trading day,
when Member End System resumes its connection after a disconnection, it can request the
Trading System to send the data within private streams or market data streams following a
designated sequence number. The private stream delivers information such as order return and
trade return to the Member System, while the market data stream provides market data
information to the Market Data Receiving System. Private streams are classified into
member’s private stream and trader’s private stream.

The Trading System maintains the private stream of each member. All member-specific
return messages, such as order return and trade return, will be released through the member’s
private stream. Access to a member’s private stream requires the trader to have the
corresponding subscription permissions.

Trader’s private stream is similar to member’s private stream, but it only covers return
message for trades initiated by a particular trader. Every trader has the right to subscribe to his
or her own trader’s private stream.

The market data provided by the Trading System is organized by topics. Each topic
contains market data for a group of contracts. The Exchange defines which topics each market
data user is allowed to subscribe to. Each market data topic corresponds to a market data
stream.

To receive market data notifications, the Market Data Receiving System must subscribe
to one or more market data topics after connecting to the market data front-end processor.

3) Public Communication Mode

The Public Communication Mode is bidirectional and supports public data streams
(referred to as public streams).

The Trading System sends market public information to the Member System. The public
stream is reliable, and the Trading System maintains the public streams across the entire
system. Within a trading day, when Member System resumes its connection after a
disconnection, it can request the Trading System to send the data within public streams
following a designated sequence number.

Trading API & Market Data API Interface Specifications v2.00

3. Interface Mode

3.1. TraderAPI Interface

TraderAPI provides two interfaces: CShfeFtdcTraderApi and CShfeFtdcTraderSpi.
These two interfaces are encapsulation on the FTD Protocol.

Member System can send operating requests via CShfeFtdcTraderApi; and it can
handle/process the response and reply from the NGES Trading System by inheriting
CShfeFtdcTraderSpi and reloading the callback functions.

3.1.1. Dialog Stream and Query Stream Programming Interface

The programming interface for communication through dialog stream typically looks
like below.

////Request:

int CShfeFtdcTraderApi::RegXXX(
CShfeFtdcXXXField* pRegXXX,
int nRequestiD);

////Response:

void CShfeFtdcTraderSpi::OnRspXXX(
CShfeFtdcXXXField* pRspXXX,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

The request interface contains two parameters.

The 1st parameter is the requested content, and it cannot be left as empty. This parameter
would use a class according to the type of the request command/content. Please refer to the
appendix “Enumeration Value List” and “Data Type List” for variable types and allowed

values for the members of this class.

The 2nd parameter is the request ID. The request ID is maintained by Member System
and the Exchange advises that every request ID should be unique. The request ID filled in
upon sending the request would be sent back to Member System together with the response
from the NGES Trading System, and user can match a particular request with a particular
response by using this number.

The CShfeFtdcTraderSpi callback function/method would be called upon getting reply
from the Trading System. If there is more than one piece of response data, the callback
function/method would be called multiple times.

The callback function requires four input parameters:

The 1st parameter is the actual data in the response. If there is an error in the process or
if there is no such result, this field may be NULL.

The 2nd parameter is the processed result, indicating whether the processing of the result
for the current request is a success or a failure. If multiple callbacks occur, the value for this
parameter from the 2nd callback onwards might all be NULL.

The 3rd parameter is the request ID filled in when sending the request.

Trading API & Market Data API Interface Specifications v2.00

The 4th parameter is the flag for the end of response, indicating whether this is the last
callback for the current response.

3.1.2. Private Stream Programming Interface

As described in section 2.2, data via the private stream is private information for a
particular Exchange Member or a particular trader, including order return, transaction return,
quote return, declaration return etc.

The programming interface for receiving return message via private stream typically
looks like:

void CShfeFtdcTraderSpi::OnRtnXXX(CShfeFtdcXXXField* pXXX);
/lllor
void CShfeFtdcTraderSpi::OnErrRtnXXX(

CShfeFtdcXXXField* pXXX,

CShfeFtdcRspinfoField* pRspinfo);

The CShfeFtdcTraderSpi callback function/method would be called upon getting return
data from the Trading System via the private stream. The parameter of the callback function is
the specific content of the return.

3.1.3. Public Stream Programming Interface

Public stream data includes public information such as Exchange contracts and
announcements.

The programming interface for receiving return message via public stream typically
looks like:

void CShfeFtdcTraderSpi::OnRtnXXX(CShfeFtdcXXXField* pXXX);

The CShfeFtdcTraderSpi callback function/method would be called upon getting return
data from the Trading System via the public stream. The parameter of the callback function is
the specific content of the return.

3.2. MduserAPI Interface

Similar to the TraderAPI, MduserAPI also provides two interfaces:
CShfeFtdcMduserApi and CShfeFtdcMduserSpi. These two interfaces are encapsulation on
the FTD Protocol.

Market Data Receiving System can send operation request via CShfeFtdcMduserApi
and it can process the return or response from the NGES Trading System by inheriting
CShfeFtdcMduserSpi and reloading the callback functions.

3.2.1. Dialog Stream Programming Interface

The programming interface for communication through dialog stream typically looks
like below.

Trading API & Market Data API Interface Specifications v2.00

////Request:

int CShfeFtdcMduserApi::RegXXX(
CShfeFtdcXXXField* pRegXXX,
int nRequestiD);

////Response:

void CShfeFtdcMduserSpi::OnRspXXX(
CShfeFtdcXXXField* pRspXXX,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

The request interface contains two parameters.

The Ist parameter is the requested content, and it cannot be left as empty.

The 2nd parameter is the request ID. The request ID is maintained by Market Data
Receiving System and the Exchange advises that every request ID should be unique. The
request ID filled in upon sending the request would be sent back to Member System together
with the response from the NGES Trading System, and user can match a particular request
with a particular response by using this number.

The CShfeFtdcMduserSpi callback function/method would be called upon getting reply
from the Trading System. If there is more than one piece of response data, the callback
function/method would be called multiple times.

The callback function requires four input parameters:

The 1st parameter is the actual data in the response. If there is an error in the process or
if there is no such result, this field may be NULL.

The 2nd parameter is the processed result, indicating whether the processing of the result
for the current request is a success or a failure. If multiple callbacks occur, the value for this
parameter from the 2nd callback onwards might all be NULL.

The 3rd parameter is the request ID filled in when sending the request.

The 4th parameter is the flag for the end of response, indicating whether this is the last
callback for the current response.

3.2.2. Market Data Stream Programming Interface

Market data stream carries market data information released by the Trading System.
The programming interface for receiving return message via market data stream typically
looks like:

void CShfeFtdcMduserSpi::OnRtnXXX(CShfeFtdcXXXField* pXXX);

The CShfeFtdcMduserSpi callback function/method would be called when receiving
market data. The parameter of the callback function is the specific content of the declaration.

10

Trading API & Market Data API Interface Specifications v2.00

4. Operating Mode

4.1. Workflow

The interaction process between the Member End System and the Trading System can be

divided into two stages: the initialization phase and the function calling phase.

4.1.1. Initialization Phase

In the initialization phase, Member End System has to complete the steps below (for

more details, please refer to the IDs in the Development Instance section).

Steps Member System Market Data Receiving System

1 Generate an instance of CShfeFtdcTraderApi; Generate an instance of CShfeFtdcMduserApi;

2 Generate an event handler instance; Generate an event handler instance;

3 Register an event handler instance; Register an event handler instance;

4 Subscribe to the private stream; Subscribe to the market data stream;
Subscribe to the public stream;

5 Register the network communication address of | Register the network communication address of
the trading front-end NameServer. the market data front-end NameServer.

6 Initialization Initialization

4.1.2. Function Calling Phase

In the function calling phase, Member End System can call any of request methods from
the trading or market data interface, e.g. ReqUserLogin, ReqOrderInsert, etc, and also
provide callback functions to receive response and return messages. It should be noted that:

1) Input parameters for the API request function cannot be NULL.

2) The meaning of the output parameter returned from the API request function is: 0

stands for success, other numbers indicate an error. For details of error IDs, please
refer to the Appendix for “Return Value List”.

3) The Member End System is subject to flow control when sending request
commands. If the flow control limit is exceeded, the current request will fail to be
sent.

4) Flow control includes communication flow control and in-transit flow control.
Communication flow control limits the number of requests that can be sent within
one second, while in-transit flow control limits the number of requests that have
been sent but have not yet received a response.

4.2. Working Thread

The Member End System consists of at least two threads: one is the application program
as the main thread, and the other is the APl working thread (7raderAPI or MduserAPI). The
communication between the application program and the trading front-end or market data

11

Trading API & Market Data API Interface Specifications v2.00

front-end is driven by the API working thread.

The interfaces provided by CShfeFtdcTraderApi and CShfeFtdcMduserApi are thread-
safe and can be invoked simultaneously by multiple threads.

The callback interface provided by CShfeFtdcTraderSpi is driven by the working
threads of TraderAPI. 1t receives the required data from the front-end of the Trading System
by implementing the interface method of SPI.

Similarly, the callback interface provided by CShfeFtdcMduserSpi is driven by the
MduserAPI working thread. It collects the required data from market data front-end by
implementing the interface method of SPI.

If there is blocking in callback function of the overloaded application program,
TraderAPI or MduserAPI working thread would also be blocked. In the case, the
communication between API and trading front-end or market data front-end would stop;
therefore, usually quick return is required for callback functions.

Trading front-end Market data front-end
y
Replys for
API requests,
order return, Market data
transaction information
API object return, etc. API object

Login request,

order request, SPI object . SPI object
query request Login request,
and other API Subscription
request
requests
4 4
Member System Market Data Receiving System
Chart 2. TradeAPI working thread Chart 3. MduserAPI working thread

4.3. Connection with the Trading System

TraderAPI and MduserAPI, using the FTD protocol, communicate with the trading
front-end and market data front-end, respectively. They register the Front-End Name Server
(FENS) addresses via the RegisterNameServer method to establish connections with the
trading and market data front-ends.

The Exchange deploys multiple trading and market data front-end servers to achieve load
balancing and mutual backup, thereby enhancing system performance and reliability. To
ensure communication reliability during trading, TraderAPI and MduserAPI can register
multiple FENS addresses. After initialization, the API will attempt to establish a network
connection by selecting one of the registered FENS addresses. If the connection fails, it will

12

Trading API & Market Data API Interface Specifications v2.00

continue trying the remaining addresses one by one until a connection is successfully
established.

The Exchange will publish at least two FENS addresses; therefore, the Member System
should register at least two FENS addresses to avoid single points of failure in case the
connected FENS becomes unavailable.

4.4. Interaction Between Trader API and the Trading Front-end

The Member System interacts with the trading front-end through TraderAPI. Requests
from the Member System are sent to the Trading Front-end via TraderAPI. Responses and
returns from the Trading Front-end are returned to the Member System through TraderAPI.

The trading interfaces and private stream interfaces of TraderAPI are correlated. For
instance, when a user (i.e., trader) submits an order entry request via ReqOrderlnsert, the
system will return an order response OnRspOrderInsert to indicate that the Trading System
has received the order. Once the order enters the Trading System, if there is any change in the
order’s status, an order return OnRtnOrder will be returned. If the order is matched (either
fully or partially), a transaction return OnRtnTrade will be received. In such cases, the order
and transaction returns of one user may also be received by other traders under the same
member firm, provided those traders have the permission to subscribe to the member’s private
stream and have done so.

Let’s illustrate the concept with a day-to-day trading instance. Assuming there are two
Member Systems A and B, the interaction process is as follows:

1) Trader A places an order, with details: cu2511, buy, 20 lots, 74,000 RMB

® CShfeFtdcTraderApi::ReqOrderInsert: Order entry request. This function
is called by the main application thread of Member System, and sent to the
front-end of the Trading System through dialog stream.

® Order Processing of the Trading System: The order’s System ID is
numbered 1. Because there is no counterparty in matching queue at the
moment, the order status is “Not Traded and Still Queuing”. The front-end
of the Trading System send order response to the dialog stream of Trader A;
the delivered order is returned to the private stream of Trader A and the private
stream of the member to whom Trader A is subordinate. Both the order
response and the order return message are processed by TraderAPI working
thread with the calling of the SPI object methods.

® CShfeFtdcTraderSpi::OnRspOrderInsert: The front-end of the Trading
System provides a reply for the request with contents: entry is successful, and
the order with Local ID 1 is numbered as System ID 1. This function is called
by TraderAPI working thread after receiving the reply from the front-end of
the Trading System.

® CShfeFtdcTraderSpi::OnRtnOrder: The front-end of the Trading System
immediately provides order return to private stream of Trader A or private
stream of the Member to whom Trader A is subordinate. This function is called
by the TraderAPI working thread after receiving the order return from the
front-end of the Trading System. If there are other traders of Member A who
login into the Trading System and subscribe to the private stream of Member

13

Trading API & Market Data API Interface Specifications v2.00

A, they will receive the same order return message (similarly in the below
case).

2) TraderB places an order, with details: cu2511, sell, 10 lots, 74,000 RMB

3)

CShfeFtdcTraderApi::ReqOrderInsert: Order entry request.

Order Processing of the Trading System: The order’s System ID is
numbered 2. Matching is attempted and succeeds, thus the order is in the status
of “All Filled”. The front-end of the Trading System sends: order response to
Trader B’s dialog stream; order return to the private stream of Trader B and the
private stream of the Member to whom Trader B is subordinate; transaction
return to the private stream of Trader B and the private stream of the Member
to whom Trader B is subordinate; order return to the private stream of Trader
A and the private stream of the Member to whom Trader A is subordinate,
informing that the status of the order with System ID 1 has been changed by
the Trading System to “Partially Filled and Still Queuing”, and that the
“remaining unfilled lot” is 10; transaction return to the private stream of Trader
A and the private stream of the Member to whom Trader A is subordinate.
NGES Trading System would ensure that: order return would be
delivered to Member System ahead of the transaction return; “remaining
unfilled lot” field in order return has already reflected the updated
amount in the order book of the Trading System.
CShfeFtdcTraderSpi::OnRspOrderlInsert: The trading front-end provides a
reply for the request, with contents that order entry is successful, and the order
with Local ID 1 is numbered with System ID 2.
CShfeFtdcTraderSpi::OnRtnOrder: The trading front-end provides order
return to the private stream of Trader B and the private stream of the Member
to whom Trader B is subordinate; the order status is “All Filled”.
CShfeFtdcTraderSpi::OnRtnTrade: The trading front-end provides
transaction return to the private stream of Trader B and the private stream of
the Member to whom Trader B is subordinate.
CShfeFtdcTraderSpi::OnRtnOrder: The trading front-end provides order
return to the private stream of Trader A and the private stream of the Member
to whom Trader A is subordinate; Order status is “Partially Filled and Still
Queuing”, and the “remaining unmatched lot” is 10.
CShfeFtdcTraderSpi::OnRtnTrade: The trading front-end provides
transaction return to the private stream of Trader A and the private stream of
the Member to whom Trader A is subordinate.

Trader A cancels the order

CShfeFtdcTraderApi::ReqOrderAction: Order operating request. This
function is called by the Member System and sent to the front-end of the
Trading System through dialog stream.

Cancellation processing by the Trading System: The remaining order with
System ID 1 is canceled. The front-end of the Trading System send
cancellation response to the dialog stream of Trader A; the delivered order is
returned to the private stream of Trader A and the private stream of the
member to whom Trader A is subordinate. Both the order response and the
order return message are processed by TraderAPI working thread with the

14

Trading API & Market Data API Interface Specifications v2.00

calling of the SPI object methods.
CShfeFtdcTraderSpi::OnRspOrderAction: A response to the request is
given by the front-end of the Trading System, with the content being: The
cancellation was successful. This function is called by TraderAPI working
thread after receiving the reply from the front-end of the Trading System.
CShfeFtdcTraderSpi::OnRtnOrder: This function is called by the
TraderAPI working thread after receiving the order return from the front-end
of the Trading System. If there are other traders of Member A who login into
the Trading System and subscribe to the private stream of Member A, they will
receive the same order return message.

The following chart describes the UML interaction among the Member System,
TraderAPI and the Trading System.

Member
System A

!
| CShfeFtdcTraderApiz:ReqOrderlnsert | Order request: Local ID-1, cu2511, Buy 20 lots, RMB 74000
»

TraderAPI Trading e T Member
System System B

| CShieFtdcTraderSpi::OnRspOrderinsert

g =
1

Order processing

tT

Order response: Success, Local ID=1, System ID=1

I

| CShfeFtdcTraderSy

piz:OnRmOrder

Order return: System D=1, Tocal D=1,
Status=Not Traded and $till Queuing

<
<

CShfeFtdcTraderSpizOnRinOrder

CShfeFtdeTraderApi:ReqOrderinsert

Order request: Local ID=1, ¢u2511, Scll 10 lots, RMB 74000

Order processing

il

Order response: Success, Local TD=1, System [D=2 CShfeFtdcTraderSpi::OnRspOrderinsert

»
>

i SRR] [TS e R

|
|
| Order return: System 1D=2, Local ID=1, Status=All Villed | CShfel'tdeTraderSpi:: OnRinOrder

[Transction retum: Transaction 1D=1, Systom ID=2, Local ID=1] CShieFdoTraderSpis:OnRinTrade
Order return: System ID=1, Local 1D=1, i
Status=Partially Filled and Still Queuing

A4

e T

'Y

CShfeFtdeTraderSpi=:OnRimmTrade

Transaetion return: Transaction D=1, System D=1, Local [D=1 |
J

A

CShfeFtdc TraderApiz ReqQrderAction

Cancellation request: System TD=1

AT T T T

“ShfeldeTraderSpiz: OnRepOrderAction

| | Cancellation processing

Cancellation response: Success.

F————

CShfeFtdcTraderSpiz:OnRmOrder

Order refurn: System ID=1, Local ID-1, Stams-Canceled

ry

k

_

Chart 4: Illustration of the interaction between Member System and the Trading System

4.5. Interaction Between MduserAPI and the Market Data Front-end

The Market Data Receiving System interacts with the Market Data Front-end via
MduserAPI. Requests from the Market Data Receiving System are sent to the Market Data
Front-end through MduserAPI, and responses and returns from the front-end are returned to

the receiving system through MduserAPI.

Take a market data vendor’s subscription to market data as an instance. The market data
vendor subscribes to a market data topic 1001 in a snapshot mode via the Market Data

Receiving System A, and the interaction process is as follows:
® CShfeFtdcMduserApi::SubscribeMarketDataTopic: Subscription to a market
data topic. This function is called by the Market Data Receiving System.
® CShfeFtdcMduserApi::ReqUserLogin: Login request. This function is called by

15

Trading API & Market Data API Interface Specifications v2.00

the Market Data Receiving System, and sent to the front-end of the Market Data
Front-end through dialog stream.

® Request processing by the Trading System: if the login request is valid, the
Market Data Front-end will send a login request response to market data vendors
through the dialog stream, and send market data notifications to market data
vendors through the market data stream. Both the order response and the market
data notification message are processed by MduserAPI working thread.

® CShfeFtdcMduserSpi::OnRspUserLogin: The response to the login request is
given by the Market Data Front-end. This function is called by MduserAPI working
thread after receiving the reply from the Market Data Front-end.

® CShfeFtdcMduserSpi::OnRtnDepthMarketData: The Market Data Front-end
sends the latest snapshot for topic 1001 through the market data stream subscribed
by market data vendors. This function is called by MduserAPI working thread after
receiving the market data notification from the Market Data Front-end.

® CShfeFtdcMduserApi::OnRtnDepthMarketData: The Market Data Front-end
sends incremental updates for topic 1001 through the market data stream subscribed
by market data vendors.This function is called by MduserAPI working thread after
receiving the market data notification from the Market Data Front-end.

The following chart describes the UML interaction among the Market Data Receiving

System, MduserAPI and the Trading System.

Market Data
Receiving MduserAPL
System A

|

Trading
System

CShfeFtdeMduserApi::SubscribeMarketDataTopic

4

CShfeFtdeMduserApi::ReqUserLogin Login request

Login request
processing

CShfcFtdeMduserSpi::OnRspUserLogin Login response: Login successfully

r___JE

%

CShfeFtdcMduserSpi::OnRinDepthMarketData | The latest snapshot for market data topic 1001
<
<t

CShfeFtdcMduserSpi::OnRinDepthMarketData L The incremental updates for market data topic 1001
el

_________._EJ_JE_____

TTTKE AT T TR T T T T~

b
X

Chart 5: Illustration of the interaction between Market Data Receiving System
and the Trading System

4.6. Local Files

During runtime, TraderAPI would write some data into local files. When calling the
CreateFtdcTraderApi function, an input parameter can be passed to specify the local file path.

16

Trading API & Market Data API Interface Specifications v2.00

This path must be created before runtime. The file extension of all local files is “trade.con”.
MduserAPI works similarly as TraderAPI, whereas the function -called is
CreateFtdcMduserApi. The file extension of all local files is “md.con”.

4.7. Request and Response Log Files

TraderAPI offers two log interfaces for recording communication logs.
OpenRequestLog is used to open the request log and OpenResponseLog is used to open the
response log. If the logs are opened, all service requests would be written into the request log,
and all service responses and returns would be recorded into the response log. Password fields
in login requests, password change requests/responses, and the authentication token in
terminal authentication requests are omitted from the logs.

Request Format:

Timestamp, request name, request parameter name = “request parameter content”

Response Format:

Timestamp, response name, response ID, response information, response parameter
name = “response parameter content”

Return Format:

Timestamp, return name, return parameter name = “return parameter content”

4.8. Subscription Methods for Reliable Data Stream

In the FTD protocol, the private stream, public stream and market data stream, etc,
which can transmit data from one side to the other side in a reliable and orderly manner, are
called reliable data streams. Reliable data streams are critical to ensure the correctness and
completeness of the data in the Member End System. For instance, the Member System may
obtain sufficient information through various return messages in the Member’s private stream,
so that the Member System could complete its business processing at the Member’s end. In
order to guarantee the correctness of business operations in the Member End System,
messages in the private stream have to be received in a reliable, orderly and unique manner.

Reliable data stream relies on a re-transmission mechanism to guarantee the reliable and
orderly delivery of data. The Member End System is responsible for managing the Sequence
ID of the data stream. In case of transmission interruption, the system could re-subscribe to
the data stream from a specified Sequence ID to ensure data integrity.

The dialog stream and query stream do not support re-transmission; therefore, they are
unreliable streams.

API offers two methods for managing reliable data streams: re-transmitted message
serial number managed by the API and re-transmitted message serial number managed by the
Member End System.

4.8.1. Re-Transmission Sequence ID Maintained by API
The API periodically writes the sequence ID of received reliable data stream messages to
local files trade.con and md.con. If the Member System re-subscribes data stream after its

logout, then the message sequence ID recorded in the local file can be used for subscription of

17

Trading API & Market Data API Interface Specifications v2.00

the data stream. If the Member-end System is unexpectedly disconnected, the sequence ID of
the last received message may not have been written to the local file. After re-connection, the
same message may be delivered twice to the Member End System, in which case the Member
End System should perform de-duplication processing.

SubscribePrivateTopic, SubscribePublicTopic, and SubscribeUserTopic from
CShfeFtdcTraderApi and SubscribeMarketDataTopic from CShfeFtdcMduserApi are used
to subscribe to reliable data streams.

Subscription methods can be designated via interface parameters, which are classified
into three modes: RESTART (retransmission), RESUME (resuming of a transmission) and
QUICK (snapshot).

B RESTART mode starts the re-transmission from the 1st message in the stream, and

in this case, the message Sequence ID recorded in the local file is ignored.

B RESUME mode starts the re-transmission following the Sequence ID recorded in
the local file. If it is a market data stream, a snapshot of the thematic market data at
that moment will be transmitted first, and then the market data transmission will be
started from a specified Sequence ID. In order to maintain the integrity of members’
trading data, SHFE recommends the “RESUME” mode for the private stream of the
member or the trader.

B QUICK mode starts the re-transmission at the maximum Sequence ID at the
moment of subscribing the data stream. If it is a market data stream, the latest
market data snapshot of the topic will be transmitted first. The QUICK mode is
mainly used for occasions in which there are no need to guarantee the data integrity,
such as quick receiving and resuming of market data after breakdown of
communication or software. As for the member’s or trader’s private stream, SHFE
does not recommend the use of QUICK method.

Note: if a reliable data stream message has been notified to the Member End System
through the callback function of SPI, but the corresponding message sequence ID has not
been written in the file, the same message will be called back to the Member End System
twice.

4.8.2. Re-Transmission Sequence ID Managed by Member End System

Whenever the API receives a message from the reliable data stream, it first calls the
OnPackageStart function of the SPI to inform the Member End System that a message has
been received, then calls the callback function of the SPI to notify the Member End System to
process the business data, and finally calls the OnPackageEnd function of the SPI to inform
the Member End System that the callback of the message is completed. From the interfaces
OnPackageStart and OnPackageEnd, the Member End System can obtain the Sequence 1D
of the current callback message, and record the Sequence ID if necessary. When re-
transmitting the reliable data stream, the recorded Sequence ID would be used as the
parameter for the ReqSubscribeTopic method (similar to the RESUME mode).

Via the ReqSubscribeTopic method, the Member End System can specify the message
Sequence ID for data stream re-transmission. If the Sequence ID is 0, the entire data stream
would be re-transmitted (similar to RESTART mode); and if the specified Sequence ID is -1,
the message re-transmission would start from the largest Sequence ID at the moment of

18

Trading API & Market Data API Interface Specifications v2.00

subscription (similar to the QUICK mode).

As for the subscription of the market data stream, if the specified re-transmission
Sequence ID is not 0, the market data snapshots before the generation of this Sequence 1D
message will be transmitted first.

4.9. Heartbeat Mechanism

Heartbeat message is added to check whether the connection is valid or not. If one side
does not receive any heartbeat message within a specified timeout period, it could be
considered that the TCP virtual link is invalid. In this case, this side should take the initiative
to disconnect the link; if one side does not send any business message to the other side within
a certain time interval, it should send heartbeat message to the other side to maintain the
normal working status of the virtual link.

The API provided the SetHearthbeatTimeout method to set the timeout period for the
Member End System to monitor the validity of the TCP virtual link. The Trading System
regularly sends heartbeat messages to the API. If no message is received from the Trading
System in more than timeout/2 seconds, the callback function OnHeartBeatWarning will be
triggered; and if no message is received from the Trading System after timeout, TCP
connection will be interrupted and the callback function OnFrontDisconnected will be
triggered.

For instance, assuming that the member side sets the heartbeat timeout period to be 16
seconds. If API does not receive any message from the Trading System in 8 seconds, the
callback function OnHeartBeatWarning would be triggered. If no message is received in 16
seconds, API would take the initiative to disconnect the network and trigger the callback
function OnFrontDisconnected.

The front-ends of both the Trading System and the Market Data Receiving System
monitor the TCP connection of the Member End System via the heartbeat mechanism, and the
timeout parameter is also used for the two front-ends to monitor the Member End System.
The timeout parameter would be set to 10 seconds by default. The minimum allowable value
of the timeout parameter is 4 seconds and the maximum is 181 seconds.

If the timeout parameter is set at a too high level, in the situation of link disruption, a
much longer time would be taken for the Member End System to switch to the alternative link;
and if the timeout parameter is set at a too low level, unexpected switching might occur.
Therefore, the timeout setting requires a comprehensive consideration among the application
of the Member End System and the status of the network.

A timeout value of 10-30 seconds is recommended for the Member End System.

4.10. Disaster Recovery Interface

SHFE has built three data centers: Zhangjiang data center, Shanghai Futures Tower data
center, and Beijing data center. The three data centers use high-speed optical fiber to connect
each other. Zhangjiang data center is the current main data center. The Trading System runs
simultaneously at the three data centers: the main center is responsible for business processing,
and the backup centers receive data from the main center in real time.

When data center switching occurs, the backup data center takes over the work of the

19

Trading API & Market Data API Interface Specifications v2.00

main data center and continues business processing. During the data center switching, a small
amount of the business data might be lost. The Member End System needs to know the
Sequence ID of the data stream to be canceled via the API interfaces.

1)

2)

3)

The “Data Center ID” field in the API user login request message is used to identify
the last logged-in data center. The Trading System returns the currently used data
center in the user login response message.

The Member End System can obtain the Sequence ID of the data stream to be
canceled according to the APl “Data Stream Cancellation”
(OnRtnFlowMessageCancel) interface.

The Sequence IDs of the data stream to be canceled include the starting Sequence
ID and the ending Sequence ID of the cancellation. The data between the two
Sequence IDs is considered invalid data. The Member End System needs to perform
cancellation processing on the received data based on the Sequence IDs of the data
stream to be canceled. For instance, if the current Member End System requests to
subscribe to the data stream starting from Sequence ID 100, and the data stream
cancellation notification returned by the Trading System indicates that the starting
Sequence ID for cancellation is 95 and the ending Sequence ID is 100, then the
Member End System needs to perform a cancellation operation on the data
numbered 96 to 100. If the Member End System has the need to subscribe to
subsequent data, the Exchange suggests resubscribing starting from the initial
Sequence ID 95.

20

Trading API & Market Data API Interface Specifications v2.00

Part II TraderAPI Reference Manual

Part II is designed for Member’s system developers, including:
Chapter 1 is the categories of TraderAPI interfaces.

Chapter 2 is the description of TraderAPI interfaces.

Chapter 3 is a development instance of TraderAPI interfaces.

21

Trading API & Market Data API Interface Specifications v2.00

1. Categories of TraderAPI Interfaces

1.1. Management Interfaces

TraderAPI management interfaces control the life cycle and operating parameter of API.

Interface Type Interface Name Explanation
CShfeFtdcTraderApi:: CreateFtdcTraderApi Create a TraderApi instance
CShfeFtdcTraderApi:: GetVersion Gain API version

Lifecycle CShfeFtdcTraderApi:: Release Delete the instance of the interface
Management
Interfaces CShfeFtdcTraderApi:: Init Initialization
CShfeFtdcTraderApi:: Join Wait for the interface thread to end the run
CShfeFtdcTraderApi:: GetTradingDay Get the current trading day
CShfeFtdcTraderApi:: RegisterSpi Register to callback interface
Parameter CShfeFtdcTraderApi: RegisterFront Register to FEP network communication
Management address
Interfaces CShfeFtdcTraderApi:: RegisterNameServer Register to FENS address
CShfeFtdcTraderApi:: SetHeartbeatTimeout Set heartbeat timeout
CShfeFtdcTraderApi:: SubscribePrivateTopic Subscribe to member private stream
Subscripti
vbsetption CShfeFtdcTraderApi:: SubscribePublicTopic Subscribe to public stream
Interfaces
CShfeFtdcTraderApi:: SubscribeUserTopic Subscribe to trader’s private stream
CShfeFtdcTraderApi:: OpenRequestLog Open request log file
Logging interface
CShfeFtdcTraderApi:: OpenResponseLog Open response log file
The method is called when communication
CShfeFtdcTraderSpi:: OnFrontConnected with the Trading System connection is
established.
This method will be called when
CShfeFtdcTraderSpi:: OnFrontDisconnected communication with the Trading System is

Communication disconnected.

Status Interfaces The method is called when no heartbeat
CShfeFtdcTraderSpi:: OnHeartBeatWarning . i)

message is received after a long time.
CShfeFtdcTraderSpi:: OnPackageStart Notification for start of message callback
Notification f¢ d of th
CShfeFtdcTraderSpi:: OnPackageEnd orication fot enc Of the message
callback
Disaster Recovery | CShfeFtdcTraderSpi::

Interfaces

OnRtnFlowMessageCancel

Notification for data stream cancellation

1.2. Service Interfaces

Servi Dat:
ervice Service Request Interface / Response Interface ata
Type Stream
Login Login CShfeFtdcTraderApi:: ReqUserLogin Dialogue

22

Trading API & Market Data API Interface Specifications v2.00

Service . Data
Service Request Interface / Response Interface
Type Stream
CShfeFtdcTraderSpi:: OnRspUserLogin Stream
Logout CShfeFtdcTraderApi:: ReqUserLogout Dialogue
& CShfeFtdcTraderSpi:: OnRspUserLogout Stream
User P: d Dial
ser Fasswor CShfeFtdcTraderApi:: ReqUserPasswordUpdate 1alogue
Update Stream
User P: d Dial
ser Fasswor CShfeFtdcTraderSpi:: OnRspUserPasswordUpdate 1aloghe
Update Stream
Terminal CShfeFtdcTraderApi:: ReqAuthenticate Dialogue
Authentication | CShfeFtdcTraderSpi:: OnRspAuthenticate Stream
Topic/Theme/
opslc b'eCCtme CShfeFtdcTraderApi:: ReqSubscribeTopic Dialogue
u
J. . CShfeFtdcTraderSpi:: OnRspSubscribeTopic Stream
Subscription Subscription
Topic/Theme/ | CShfeFtdcTraderApi:: ReqQryTopic Query
Subject Query | CShfeFtdcTraderSpi:: OnRspQryTopic Stream
Order Entry CShfeFtdcTraderAp.i:: ReqOrderInsert Dialogue
CShfeFtdcTraderSpi:: OnRspOrderlnsert Stream
Order Action CShfeFtdcTraderAp.i:: RerrderActiog Dialogue
CShfeFtdcTraderSpi:: OnRspOrderAction Stream
Price . .
Quotation CShfeFtdcTraderApi:: ReqQuotelnsert Dialogue
u
CShfeFtdcTraderSpi:: OnRspQuotelnsert Stream
Entry
Price . . .
Quotation CShfeFtdcTraderApi:: ReqQuoteAction Dialogue
u
. CShfeFtdcTraderSpi:: OnRspQuoteAction Stream
Action
Declaration | CShfeFtdcTraderApi:: ReqExecOrderInsert Dialogue
Entry CShfeFtdcTraderSpi:: OnRspExecOrderInsert Stream
Declaration | CShfeFtdcTraderApi:: ReqExecOrderAction Dialogue
Action CShfeFtdcTraderSpi:: OnRspExecOrderAction Stream
Tradi
rading Abandon . .
Declaration CShfeFtdcTraderApi:: ReqAbandonExecOrderlnsert Dialogue
Entry CShfeFtdcTraderSpi:: OnRspAbandonExecOrderInsert Stream
Aband
Decla; I;at(;lc;ln CShfeFtdcTraderApi:: ReqAbandonExecOrderAction Dialogue
Action CShfeFtdcTraderSpi:: OnRspAbandonExecOrderAction Stream
CShfeFtdcTraderApi:: ReqQuoteDemand)
te D d Dial
Quo En eman CShfeFtdcTraderSpi:: OnRspQuoteDemand CShfeFtdcTraderSpi:: Slilr;g;e
try OnRtnQuoteDemandNotify
Option Self-
?_I;(;n ine CShfeFtdcTraderApi:: ReqOptionSelfCloseUpdate Dialogue
sing CShfeFtdcTraderSpi:: OnRspOptionSelfCloseUpdate Stream
Update
Option Self-
?_I;(;n ine CShfeFtdcTraderApi:: ReqOptionSelfCloseAction Dialogue
Act?ong CShfeFtdcTraderSpi:: OnRspOptionSelfCloseAction Stream
Private Trade Return | CShfeFtdcTraderSpi:: OnRtnTrade Private

23

Trading API & Market Data API Interface Specifications v2.00

Service . Data
Service Request Interface / Response Interface
Type Stream
Return Stream
Privat
Order Return | CShfeFtdcTraderSpi:: OnRtnOrder rvate
Stream
Price .
. . Private
Quotation | CShfeFtdcTraderSpi:: OnRtnQuote
Stream
Return
Order .
:] Private
Execution | CShfeFtdcTraderSpi:: OnRtnExecOrder
Stream
Return
Order Ent Privat
ret sty CShfeFtdcTraderSpi:: OnErrRtnOrderInsert rvate
Error Return Stream
Order Acti Privat
raet Action CShfeFtdcTraderSpi:: OnErrRtnOrderAction rvate
Error Return Stream
Price
tati Privat
Quotation CShfeFtdcTraderSpi:: OnErrRtnQuotelnsert rvate
Entry Stream
Error Return
Price
Quotation) . Private
. CShfeFtdcTraderSpi:: OnErrRtnQuoteAction
Action Stream
Error Return
Declaration .
. Private
Entry Error | CShfeFtdcTraderSpi:: OnErrRtnExecOrderInsert Stream
Return
Declaration .
. . . Private
Action Error | CShfeFtdcTraderSpi:: OnErrRtnExecOrderAction St
ream
Return e
Abandon .
. . Private
Declaration | CShfeFtdcTraderSpi:: OnRtnAbandonExecOrder Stream
Return
Abandon
Declaration) Private
CShfeFtdcTraderSpi:: OnErrRtnAbandonExecOrderInsert
Entry Error Stream
Return
Abandon
Declaration) . Private
. CShfeFtdcTraderSpi:: OnErrRtnAbandonExecOrderAction
Action Error Stream
Return
Option Self- .
. . . Private
Hedging CShfeFtdcTraderSpi:: OnRtnOptionSelfCloseUpdate Stream
Update Return
Option Self-
Hedging . . Private
CShfeFtdcTraderSpi:: OnErrRtnOptionSelfCloseUpdate
Update Error Stream
Return

24

Trading API & Market Data API Interface Specifications v2.00

Service . Data
Service Request Interface / Response Interface
Type Stream
Option Self-
Hedgi Privat
.e smng CShfeFtdcTraderSpi:: OnErrRtnOptionSelfCloseAction rvae
Action Error Stream
Return
Contract/Instru
t Tradi Publi
frent trading CShfeFtdcTraderSpi:: OnRtnlnstrumentStatus Hoie
Status Stream
Notification
Public
Notification Instrument Public
Addition CShfeFtdcTraderSpi:: OnRtnlnsInstrument
. . Stream
Notification
Bulleti Publi
%1 © 11.1 CShfeFtdcTraderSpi:: OnRtnBulletin uoie
Notification Stream
CShfeFtdcTraderApi:: ReqQryPartAccount Query
Fund Query .
CShfeFtdcTraderSpi:: OnRspQryPartAccount Stream
Order Query CShfeFtdcTraderAp.i:: ReqQryOrder Query
CShfeFtdcTraderSpi:: OnRspQryOrder Stream
Price .
Quotation CShfeFtdcTraderApi:: ReqQryQuote Query
u
CShfeFtdcTraderSpi:: OnRspQryQuote Stream
Query
Trad
G ;aﬁl?e%x?;c CShfeFtdcTraderApi:: ReqQryTrade Query
= CShfeFtdcTraderSpi:: OnRspQryTrade Stream
hed order)
Client Query CShfeFtdcTraderAgi:: RquryClien_t Query
CShfeFtdcTraderSpi:: OnRspQryClient Stream
Memb
H;rziner CShfeFtdcTraderApi:: ReqQryPartPosition Query
. £ CShfeFtdcTraderSpi:: OnRspQryPartPosition Stream
Position Query
Query Client Holding | CShfeFtdcTraderApi:: ReqQryClientPosition Query
Position Query | CShfeFtdcTraderSpi:: OnRspQryClientPosition Stream
Instrument/Co | CShfeFtdcTraderApi:: ReqQrylnstrument Query
ntract Query | CShfeFtdcTraderSpi:: OnRspQrylnstrument Stream
Inst t/C
nr::a:ir;:: dino CShfeFtdcTraderApi:: ReqQrylnstrumentStatus Query
g CShfeFtdcTraderSpi:: OnRspQrylnstrumentStatus Stream
Status Query
Hedge Quota | CShfeFtdcTraderApi:: ReqQryHedgeVolume Query
Query CShfeFtdcTraderSpi:: OnRspQryHedgeVolume Stream
Market Data | CShfeFtdcTraderApi:: ReqQryMarketData Query
Query CShfeFtdcTraderSpi:: OnRspQryMarketData Stream
Bulletin Query CShfeFtdcTraderAp.i:: ReqQryBulletin . Query
CShfeFtdcTraderSpi:: OnRspQryBulletin Stream
Ord
E e:: :iron CShfeFtdcTraderApi:: ReqQryExecOrder Query
Xecu
Query CShfeFtdcTraderSpi:: OnRspQryExecOrder Stream

25

Trading API & Market Data API Interface Specifications v2.00

Service . Data
Service Request Interface / Response Interface
Type Stream
Exchange Rate | CShfeFtdcTraderApi:: ReqQryExchangeRate Query
Query CShfeFtdcTraderSpi:: OnRspQryExchangeRate Stream
Aband
Decla:;azzn CShfeFtdcTraderApi:: ReqQryAbandonExecOrder Query
Query CShfeFtdcTraderSpi:: OnRspQryAbandonExecOrder Stream
Option Self-
II){ 1e(()1n ine CShfeFtdcTraderApi:: ReqQryOptionSelfClose Query
Quiryg CShfeFtdcTraderSpi:: OnRspQryOptionSelfClose Stream
Dialogue
E E St
ot ot CShfeFtdcTraderSpi:: OnRspError ream
Response Response Query
Stream

26

Trading API & Market Data API Interface Specifications v2.00

2. TraderAPI Interface Description

2.1. CShfeFtdcTraderSpilnterface

CShfeFtdcTraderSpi implements event notification interface. User has to derive the
CShfeFtdcTraderSpi interface, and writes event-handling methods to process the required
events.

2.1.1. OnFrontConnected Method

After the TCP virtual link path connection between Member System and the NGES
Trading System is established, the method is called. The mentioned connection is
automatically established by the API.

Function Prototype:

void OnFrontConnected();

Note: The fact that the OnFrontConnected is called only implies that the TCP connection
is successful; user must log in to the Member System by himself/herself to carry out any
business operations afterwards.

2.1.2. OnFrontDisconnected Method

After the TCP virtual link path connection between Member System and the NGES
Trading System is broken, the method is called. In this case, API would automatically
reconnect, and the automatically re-connected address may be the originally registered
address or other available communication addresses that are supported by the system, which
is decided by the application.

Function Prototype:

void OnFrontDisconnected(int nReason);

Parameters:
nReason: disconnection reasons
0x1001 network reading failed
0x1002 network writing failure
0x2001 heartbeat receiving timeout
0X2002 message encryption failed
0X2003 message decryption failed
0x2004 the message of an unsubscribed topic has been received
0X2005 the received message serial number is discontinuous
0x2006 the length of the message is illegal
0x2007 message conversion error
0X2008 login failure (front server)

2.1.3. OnHeartBeatWarning Method

27

Trading API & Market Data API Interface Specifications v2.00

This is for heartbeat timeout warning. This method will be called when no message is
received for an extended period of time. By default, the timeout warning is triggered after 5
seconds. If the method SetHeartbeatTimeout (unsigned int timeout) has been called to set a
custom heartbeat timeout, the warning will be triggered at half of the specified timeout (i.e.,
timeout / 2).

Function Prototype:

void OnHeartBeatWarning(int nTimeLapse);

Parameters:
nTimeLapse: time lapse from last time receiving the message (in seconds).

2.1.4. OnPackageStart Method

This is the method for notification of start of message/packets callback. When the API
receives a message, this method will be called if the message belongs to the public stream or a
private stream (either the member private stream or the trader private stream). After this
method will be called, callbacks for each data field are triggered, followed by a notification
indicating the end of the message callback process.

Function Prototype:

void OnPackageStart(int nTopiclD, int nSequenceNo);

Parameters:
nTopicID: Topic ID (e.g. private stream, public stream)
nSequenceNo: Message Sequence Number

2.1.5. OnPackageEnd Method

This is the notification for end of message/packets callback. After the API receives a
message, if the message belongs to the public stream, the private stream (member private
stream, trader private stream) calls the message callback to start notification, then the callback
of each data field, and finally calls this method.

Function Prototype:

void OnPackageEnd(int nTopiclD, int nSequenceNo);

Parameters:
nTopicID: Topic ID (e.g., private stream, public stream).
nSequenceNo: Message Sequence Number.

2.1.6. OnRspUserLogin Method

After Member System sends out a login request, and when the Trading System sends
back the response, the method is called to inform the Member System whether the login is
successful.

Function Prototype:

28

Trading API & Market Data API Interface Specifications v2.00

void OnRspUserLogin(
CShfeFtdcRspUserLoginField* pRspUserLogin,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pRspUserLogin: returns the address of user login information structure.
The structure:

struct CShfeFtdcRspUserLoginField {
//[TradingDay
TShfeFtdcDateType TradingDay;
/l/Successful login time
TShfeFtdcTimeType LoginTime;
///Maximum order’s local ID
TShfeFtdcOrderLocallDType MaxOrderLocallD;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Name of Trading System
TShfeFtdcTradingSystemNameType TradingSystemName;
///Data Center ID
TShfeFtdcDataCenterlDType DataCenterlD;
/l/Current size of member’s private stream
TShfeFtdcSequenceNoType PrivateFlowSize;
///Current size of private stream of trader/user
TShfeFtdcSequenceNoType UserFlowSize;
///action day
TShfeFtdcDateType ActionDay;

b

Note: When retrieving the date on which the business action occurred, use the ActionDay field; the same

applies to all similar cases below.

pRsplnfo: returns the address of user response information. Error ID 0 means successful
operation; this is the same as below. Response information/message structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
3 Member not found Login failed due to an incorrect member ID
45 Settlement Group not properly Trading System initialization incomplete, please try
initialized again later
59 Same user logged in Same user logged in multiple times from different [P
addresses
60 Username or password incorrect Invalid username or password
62 User inactive The Trading System does not permit login for this user
64 User does not belong to this The member ID of login is wrong
member

29

Trading API & Market Data API Interface Specifications v2.00

65 Invalid login IP address Login attempt from an IP address not authorized by the
Exchange

75 Front-End inactive Trading System Front-End Inactive

100 Invalid user type Non-Trading user attempting to log in

106 Duplicate session Multiple logins with the same session

135 User authentication failed User key verification failed

136 User does not have permission for ~ User unauthorized for direct Front-End access
direct Front-End connection

150 Proprietary member not Proprietary member terminal information not
authenticated or authentication authenticated
failed before login

nRequestID: returns the user login request ID; this ID is specified by the user upon
login.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.7. OnRspUserLogout Method
After Member System sends out logout request, the Trading System calls this method to

send back the response to inform the Member System whether logout is successful.
Function Prototype:

void OnRspUserLogout(
CShfeFtdcRspUserLogoutField* pRspUserLogout,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pRspUserLogout: returns the address of user logout information/message. User logout
information/message structure:

struct CShfeFtdcRspUserLogoutField {
//[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
b

pRsplnfo: returns the address of user response information/message. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
66 User not logged in User not logged in
67 User not logged in with this Logout Attempt by a different user than the one logged
account in
68 Member Not Logged In with This Logout Attempt by a Different Member than the One

30

Trading API & Market Data API Interface Specifications v2.00

Account Logged In

nRequestID: returns the user logout request ID; this ID is specified by the user upon
logout.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.8. OnRspUserPasswordUpdate Method
This method is for the user password change reply. After Member System sends out

password update request, the Trading System calls it to send back the response.
Function Prototype:

void OnRspUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pUserPasswordUpdate: pointer to the user password update structure, including the
input data for user password update request. User password update structure:

struct CShfeFtdcUserPasswordUpdateField {
/l[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///0ld password
TShfeFtdcPasswordType OldPassword;
///New password
TShfeFtdcPasswordType NewPassword;

¥

pRsplnfo: pointer to the response information/message structure. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
23 Settlement group data not Trading System not fully initialized. Please try again
synchronized later
58 User mismatch The user attempting to change the password is different
from the Logged-In user
60 Wrong username or Password Incorrect original password
62 User inactive User does not have permission to log in, trade, or
change Password
66 User not logged in Not logged In
68 Member not logged in with this The member ID for password change does not match
account the logged-in member

31

Trading API & Market Data API Interface Specifications v2.00

147 New password does not meet New password does not meet the password policy
requirements (Minimum 8 requirements
characters, must include numbers,
uppercase and lowercase letters)

nRequestID: returns the user password modification request ID; this ID is specified by
the user upon password modification

bIsLast: indicates whether current return is the last return with respect to the
nRequestID

2.1.9. OnRspSubscribeTopic Method
This method is for the reply on topic/theme subscription. After Member System sends

out topic subscription request, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pDissemination: pointer to the subscription topic structure, including topic subscribed
and sequence number of starting message. The structure:

struct CShfeFtdcDisseminationField {
/l/Sequence series
TShfeFtdcSequenceSeriesTypeSequenceSeries;
/l/Sequence number
TShfeFtdcSequenceNoTypeSequenceNo;

b

pRsplnfo: pointer to the response information/message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
1 Invalid session or topic does not The subscribed topic does not exist or the number of
exist subscriptions has exceeded the limit

nRequestID: returns the user subscribed topic request ID; this ID is specified by the user
upon subscription.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.
2.1.10. OnRspQryTopic Method

This method is for the reply to the query of topic. This method will be called when the

32

Trading API & Market Data API Interface Specifications v2.00

Trading System returns a response after the Member System issues topic query instruction.
Function Prototype:

void OnRspQryTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:

pDissemination: pointer to the topic query structure, including the topic to be queried

and the number of messages in the topic. The structure:

struct CShfeFtdcDisseminationField {
///Sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;
///Sequence number
TShfeFtdcSequenceNoType SequenceNo;

b

pRsplnfo: pointer to the response information structure. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;
b

Possible errors: None

nRequestID: returns the user topic query request ID; this ID is specified by the user

upon querying topics.

bIsLast: indicates whether current return is the last return with respect to the

nRequestID.
2.1.11. OnRspError Method

This method is for error notification with respect to user request.
Function Prototype:

void OnRspError(
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pRsplnfo: returns the address of response information structure. The structure:

struct CShfeFtdcRspinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;
b

Possible errors:

33

Trading API & Market Data API Interface Specifications v2.00

Error ID Error message Possible cause
1 Not Login Not logged in yet
Too High FTD Version Too high FTD version
Unrecognized ftd tid FTD Header Error
134 APIVerification failed User session authentication failed
151 Version check failed Trading API version verification failed
997 api authentication failure Unauthorized API access
api crypt info failure Failed to query API encryption Information
998 query frequency is too high Query Frequency Too High
999 the last query result is on way Pending Query Response Exists

nRequestID: returns the user operating request ID; this ID is specified by the user upon
sending request.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.12. OnRspOrderInsert Method
This method is for the reply to the order entry. After Member System sends out order

entry instruction, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspOrderinsert(
CShfeFtdcinputOrderField* plnputOrder,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pInputOrder: pointer to the order insert structure, including input data upon submitting
order insert as well as the order ID returned from the Trading System. The tructure:

struct CShfeFtdcinputOrderField {
///Order System ID*; this field is returned from the Trading System
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
/l[Trading user ID
TShfeFtdcUserIDType UserlD;
/l/Contract ID/Instrument ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Order price type/condition
TShfeFtdcOrderPriceTypeType OrderPriceType;
///Buy/Sell direction
TShfeFtdcDirectionType Direction;
///Combination offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination speculation hedge flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TShfeFtdcPriceType LimitPrice;
///Quantity

34

Trading API & Market Data API Interface Specifications v2.00

b

TShfeFtdcVolumeType VolumeTotalOriginal;

///Validity period type

TShfeFtdcTimeConditionType TimeCondition;

///GTDDate, not used
TShfeFtdcDateType GTDDate;
///Match volume type

TShfeFtdcVolumeConditionType VolumeCondition;

///Minimum Volume

TShfeFtdcVolumeType MinVolume;

//Trigger condition

TShfeFtdcContingentConditionType ContingentCondition;

///Stop Price, not used
TShfeFtdcPriceType StopPrice;
///[Force close reasons

TShfeFtdcForceCloseReasonType ForceCloseReason;

///Local order ID

TShfeFtdcOrderLocallDType OrderLocallD;

///Automatic suspend flag

TShfeFtdcBoolType IsAutoSuspend;

///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;

///Local business ID

TShfeFtdcBusinessLocallDType BusinessLocallD;

///\PAddress

TShfeFtdcIPAddressType IPAddress;

///MacAddress

TShfeFtdcMacAddressType MacAddress;

* OrderSysID: This is a sequential identifier generated by the Trading System for both regular orders and
quote-generated orders, managed under a unified numbering scheme. The value increases incrementally within the

Trading System. The SysIDs used for different business types are managed independently. For instance, the
OrderSysID for order placement and the QuoteSysID for quoting are assigned separately and are not correlated.

pRsplnfo: pointer to the response information structure. The structure:

struct CShfeFtdcRspinfoField {

¥

///Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

Possible errors:

Error ID Error message

2

3
4
6

12
15

16

Unable to find instrument
Unable to find the Member
Unable to find the client
Fields error in the order

Duplicated orders

Client has no account under the
exchange member

I0C has to be with the continuous
trading session

Possible cause

Unable to find the instrument in the order

Unable to find the Member in the order

Unable to find the client in the order

The order contains invalid field values (e.g., an out-of-
range enumerated value), or a forced liquidation reason
is specified for a non-forced-liquidation order when the
order quantity is not an integer multiple of the required
amount

Local ID in the order is duplicated

The client in the order has no account under the
specified member

I0C (immediately-or-cancel) order is tried to be entered
at non-continuous trading session

35

Trading API & Market Data API Interface Specifications v2.00

17

19

20
21

22

23

26

31

32

33

34

35

36

37

48

49

50

51

52

53

54

57

58

72

78

79

83

84

95

96

98

GFA has to be with the auction
session

Volume restriction should be with
10C order

GTD order is expired

The minimum volume is greater
than the order volume

Exchange data is not synchronized

Settlement group data is not
synchronized

This operation is forbidden under
current status

Insufficient client position

Client’s position limit is exceeded

Member holding positions is not
enough when close position
Member’s position limit is
exceeded

Unable to find account

Fund not enough

Invalid quantity

Price is not an integer multiple of
the minimum unit

Price exceeds limit up

Price falls below limit down

No trading permission

Close position only
No such trading role

Session not found
Cannot operate for other members
User not match

Natural persons are not allowed to
open positions

GTD date not set in the GTD order
Order type not supported

Stop loss order is only used for
continuous trading

Stop loss order has to be IOC/GFD

Stop loss order should specify stop
price
Hedging amount not enough

Forced-liquidation orders must be
submitted by administrator-level
users

GFA order is tried to be entered at non-auction session

The order whose volume restriction is not arbitrary does
not have the IOC time condition

The GTD date in the GTD order is expired

The order has minimum volume condition, but the order
volume is less than this minimum volume

The Trading System is not completely initialized, try
later

Initialization of the Trading System is incomplete, try
later

The trading status of the instrument is not continuous-
trading or auction or auction balance

The client does not have enough position to place the
close order

When submitting an open position order, the client’s
general position limit for the specified contract is
exceeded

The submitted close order exceeds the member’s
available position

When entering open position order, the member’s limit
position is exceeded

Unable to find the fund account used in the order
There is not enough fund in the fund account

The order quantity is not a positive multiple of the
minimum order quantity or exceeds the maximum
Order price is not an integer multiple of the minimum
variable price unit

Order price exceed the upper limit of the contract
Order price lower than the lower limit of the instrument
The member, client, or user does not have trading
permission for the specified contract

The member, client, or user is only authorized to close
positions for the specified contract

Member, client or trader have no rights to trade
specified contract

User not logged in

The user operates on a member not to whom he belongs
The user in the quote does not match the user when
logging in

A client of the natural person type initiates a position
opening request in the delivery month

GTD order does not specify the GTD date

SHFE does not support this type of order

Stop loss order is entered in non-continuous trading
session

Time condition is neither [OC nor GFD at stop loss
order

Stop loss order does not specify a stop price

When entering hedging order, client hedge amount is
not enough

The current user does not have the required permissions
to submit a forced-liquidation order

36

Trading API & Market Data API Interface Specifications v2.00

101 Clearing members are not The submitting member is classified as a clearing
permitted to place orders member and therefore cannot trade

102 Unable to locate the corresponding No clearing member is associated with the submitting
clearing member member

103 Hedging position unable to close Hedging position should not use close-today-position
within the same day order to close the position

114 Best price order unable to queue Best price order time condition is not IOC

131 The client’s open position for the ~ The client’s number of order submissions for the
specified contract has exceeded the specified product has exceeded the per-second order
daily open limit flow control

132 Exceeded the order limit per The number of orders submitted by clients on a certain
second for client products product within one second exceeds the limit

153 Market orders must use a time-in- ~ The market order time condition is not
force condition of GFD or IOC

154 Market orders can only be A market order was submitted outside the continuous
submitted during the continuous trading phase
trading session

155 Market orders are only supported A market order was submitted for a non-futures-or-
for futures and options contracts options contract

1005 No record No contract record found for the order

nRequestID: returns the user order insertion request; this ID is specified by the user
upon submitting the order.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID
Note:

CShfeFtdcRspInfoField.ErrorID is 0 implies that current order entry is successful. In
CShfeFtdcInputOrderField* pInputOrderonly order 1D (the system ID given by the Trading
System) and local order ID are meaningful, which are used to relate the order between the
Trading System and Member System. The detailed content of the order should be obtained
from private stream.

Please refer to OnRtnOrder method for the description of each data field in
CShfeFtdcInputOrderField.

2.1.13. OnRspOrderAction Method

This method is used to response to order operations, which includes order cancellation,
order suspension, order activation and order modification. When Member System sent an
order for order operation and Trading System needs to return a response, this method will be
called.

Function Prototype:

void OnRspOrderAction(
CShfeFtdcOrderActionField* pOrderAction,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pOrderAction: pointer to the order operation structure, including the input data when an
order in submitted as well as the order number returned from the Trading System. Order

37

Trading API & Market Data API Interface Specifications v2.00

operation structure:

struct CShfeFtdcOrderActionField {

///Order number
TShfeFtdcOrderSysIDType OrderSysID;
///Local Order number
TShfeFtdcOrderLocallDType OrderLocallD;
/l/Flag of Order operation
TShfeFtdcActionFlagType ActionFlag;
///Member’s ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client’s ID

TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;

/l/Price, not used

TShfeFtdcPriceType LimitPrice;
/l/Quantity change, not used
TShfeFtdcVolumeType VolumeChange;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD
///Business unit, not used
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///'P Address

TShfeFtdcIPAddressType IPAddress;

///Mac Address
TShfeFtdcMacAddressType MacAddress;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:

Error ID
2

3
4
8
15
16
17

20

22

Error message

Contract cannot not be found
Member cannot not be found
Client cannot be found

Error field in the order operation

Client didn’t open an account at
this member

10C orders must be placed during
the continuous trading session
GFA orders must be submitted
during the call auction session
The GTD order has expired

The exchange’s data is not in the
synchronized state

Possible cause

Contract cannot be found in order operation

Member cannot be found in the order operation

Client cannot be found in the order operation

Illegal field values in the order operation (out-of-range
of the enumerated value)

Client didn’t open an account at the designated member

Attempted to operate an IOC order outside the
continuous trading session

Attempted to operate a GFA order outside the call
auction session

The GTD date specified in the GTD order has already
expired

Initialization of Trading System is not completed, please
try later

38

Trading API & Market Data API Interface Specifications v2.00

23

24
26

28

29

30

31

32

33

34

35

36

37

48

49

50

51

52

54
57

58

71

72

76

77

79

83

95

The settlement group’s data is not
in synchronized date

Order cannot be found

This operation is prohibited by
current state

The order has been fully filled
The order has been canceled
Insufficient quantity for
modification

Insufficient client position

Exceeding client’s position limit

The member does not hold a
sufficient position to close
Exceeding member’s position limit

Account cannot be found
Insufficient fund
Invalid quantity

The price is not the integral
multiple of the Min. unit
Price exceeds the upward limit

Price exceeds the downward limit

No trading permissions

Only closing positions is permitted

Session not found
Cannot operate for other members

Unmatched user

Operations on derivative orders are
not allowed

Natural person clients are not
allowed to open positions

The order has been suspended

The order has been activated

Unsupported order type

Stop-loss orders can only be used
during the continuous trading
session

A stop-loss price must be specified
for the stop-loss order

Initialization of Trading System is not completed, please
try later

Order to be operated cannot be found

As for activation of operation, the contract’s trading
status is not the continuous trade, call auction order or
call auction balancing

As for other operation, the trading status is not the
continuous trade or call auction order

Order has already been fulfilled

Order has already been canceled

After modifying the order quantity, the remaining order
quantity is less than zero

The client does not have enough position to place the
close order

The order cannot be activated because it exceeds the
client’s general position limit

The member has insufficient position to place the close
order

The order cannot be activated because it exceeds the
member’s position limit

The fund account shall be used cannot be found

No sufficient funds in fund account

The modified order quantity is either not a positive
integer multiple of the minimum order quantity, or it
falls outside the valid quantity range

Price of order after modification is not the integral
multiple of the contract’s tick size

Price of order after modification is higher than the
contract’s upward price limit

Price of order after modification is lower than the
contract’s downward price limit

The specified contract, the client for the specified
contract, or the user does not have trading permission
The member, the client for the specified contract, or the
user only has permission to close positions

User not logged in

The user is not authorized to operate on behalf of other
members

Trader in the order operation doesn’t match with trader
at the time of login

The user attempted to operate on a derivative order

During the delivery month, natural person clients cannot
activate or modify opening orders

The order has already been suspended when attempting
to suspend it

The order has already been activated when attempting to
activate it

The exchange does not support this order type, for
instance: order modification

Attempted to operate a stop-loss order outside the
continuous trading session

The stop-loss order does not contain a specified stop-
loss price

39

Trading API & Market Data API Interface Specifications v2.00

96 Insufficient hedging quota After activation or modification, the client’s hedging
quota is insufficient

98 Forced liquidation orders must be A non-administrator attempted to operate a forced
operated by an administrator liquidation order

99 Operation shall not be conducted ~ Unauthorized trader operates order submitted by other
by other users traders of the same member

131 The client’s open volume for the The client’s open position in a specific contract has
contract exceeds the daily limit exceeded the daily open position limit

133 The client has exceeded the per- The client’s number of order cancellations within one

second order cancellation limit for second for a specific product exceeds the allowed limit
the product

nRequestID: returns the user order operation request ID; this ID is specified by the user
upon order operating.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.14. OnRspQuotelnsert Method

This method is used to response to quote entry. When Member System gives the
instructions for entry of order and Trading System returns a response, this method will be
called.

Function Prototype:

void OnRspQuoteinsert(
CShfeFtdcinputQuoteField* plnputQuote,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:

pInputQuote: pointer to the input quote structure, including the input data of quote
entry operation and the quoto number returned from Trading System. The input quote
structure:

struct CShfeFtdcinputQuoteField {
///Quotation number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Quantity
TShfeFtdcVolumeType Volume;
///Contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocallDType QuotelocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
//Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;

40

Trading API & Market Data API Interface Specifications v2.00

/l/Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
/l/Buyer’s price
TShfeFtdcPriceType BidPrice;
/l/Seller's combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
///Seller’s combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
/l/Seller’s price
TShfeFtdcPriceType AskPrice;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request number
TShfeFtdcOrderSysIiDType QuoteDemandID;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

+

Possible errors:

Error ID
2

3
4
7
13
15
22
23
26
31
32

33

34

35
36

Error message

Contract cannot be found
Member cannot be found
Client cannot be found
Error field in the quote

Duplicate Quote

Client didn’t open an account at
this member

The exchange’s data is not in the
synchronized state

The settlement group’s data is not
in synchronized date

This operation is prohibited by
current state

Insufficient client position

Exceeding client’s position limit

The member’s position is
insufficient at the time of closing-
out

Exceeding member’s position limit

Account cannot be found
Inadequate fund

Possible cause

Contract cannot be found in the quote

Member cannot be found in the quote

Client cannot be found in the quote

Illegal field values in the quote (out-of-range of the
enumerated value)

Duplicate local quoto number in the quote

Client in the quote didn’t open an account at the
designated member

Initialization of Trading System is not completed,
please try later

Initialization of Trading System is not completed,
please try later

The contract’s trading status is not the continuous trade,
call auction order or call auction balancing

The client does not have enough position to place the
close order

The quote causes the client’s general position to exceed
the position limit

The member does not have enough position

This quote caused the member’s open interest exceeding
position limit

The fund account used for quotation cannot be found
No sufficient funds in fund account

41

Trading API & Market Data API Interface Specifications v2.00

37

48

49

50

51

52

53

54
57

58

72

79
96

98

101

102

103

131

132

1005

Invalid quantity

A multiple of a non-smallest unit of
price
Price exceeds the upward limit

Price exceeds the downward limit

Not authorized to trade

Only closing positions is permitted
No such trading role

Session not found

Operation shall not be conducted
by other members

Unmatched user

Natural persons are not allowed to
open positions

Unsupported quote type
Insufficient hedging quota

Forced liquidation orders must be
submitted by an administrator
Clearing members cannot make
transactions

Failed to locate the corresponding
clearing member

Today’s hedging positions cannot
be closed

The client’s opening volume for
the contract exceeds the daily limit
The client’s order submission rate
for the product exceeds the per-
second limit

No record found

The quote quantity is not a positive multiple of the
minimum order quantity or exceeds the maximum

The quoted price is not the integral multiple of the
contract’s tick size

The quoted price is higher than the contract’s upward
price limit

The quoted price is lower than the contract’s downward
price limit

Not authorized to trade in the designated contract, or
client or user is not authorized to trade in the designated
contract

The member, the client for the specified contract, or the
user only has permission to close positions

On the designated contract, member doesn’t has the
trading role corresponding to such client

User not logged in

User conducts operation on behalf of member to whom
he is not subordinate

User in the quote doesn’t match with user at the time of
login

A client of the natural person type initiates a position
opening request in the delivery month

The Exchange does not support this order type

When entering the quotation, the client’s hedging
amount is insufficient

A non-administrator user attempted to place a forced
liquidation order

The quoting member is of clearing member type

No clearing member associated with the quoting
member could be found

Hedging positions should not be closed using the
current position quotation

The client’s open position in a specific contract exceeds
the allowed limit

The number of orders submitted by the client for a
product within one second exceeds the limit

Contract record corresponding to quote is missing

nRequestID: returns the user quote entry operation request; this ID is specified by the

user upon quote entry.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.15. OnRspQuoteAction Method

This function is used to response to quote operation, including cancellation of quote,

suspension of quote, activation of quote and modification to quote. When Member System

gives the instructions for quote operation and Trading System returns a response, this method

will be called.

Function Prototype:

void OnRspQuoteAction(

CShfeFtdcQuoteActionField* pQuoteAction,

42

Trading API & Market Data API Interface Specifications v2.00

CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:

pQuoteAction: pointer to the quote operation structure, including the input data of
request for quote operation and quoto number returned from Trading System. Quote operation
structure:

struct CShfeFtdcQuoteActionField {
///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Local quoto number
TShfeFtdcOrderLocallDType QuotelocallD;
/l/Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
/l/Local number of operation
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP Address
TShfeFtdcIPAddressType IPAddress;
///Mac Address
TShfeFtdcMacAddressType MacAddress;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract specified in the quote operation cannot be
found
3 Member cannot be found Member specified in the quote operation cannot be
found
4 Client cannot be found Client specified in the quote operation cannot be found
8 Error field in the quote operation ~ The derived order from the quote operation contains

invalid field values (e.g., price is not a floating-point
number or is outside the valid range)

9 Error field in the quote operation ~ The quote operation contains invalid field values (e.g.,
out-of-range enumeration values or unsupported

43

Trading API & Market Data API Interface Specifications v2.00

operation flags such as modify, activate, or suspend)
15 Client didn’t open an account at Client didn’t open an account at the designated member
this member

22 The exchange’s data is not in the Initialization of Trading System is not completed, please
synchronized state try later

23 The settlement group’s data is not Initialization of Trading System is not completed, please
in synchronized date try later

25 Quote cannot be found Quote to be operated cannot be found

26 This operation is prohibited by As for activation of operation, the contract’s trading
current state status is not the continuous trade, call auction order or

call auction balancing
As for other operations, the trading status is not the
continuous trade or call auction order

28 Order has been fully filled Order derived from quote has already been fulfilled
29 The order has been canceled Order derived from the quote has already been canceled
35 Account cannot be found The fund account shall be used cannot be found
36 Insufficient fund No sufficient funds in fund account
51 No trading permission No trading permission for the specified contract, client,
or user
54 Session not found User not logged in
57 Operation on behalf of another User attempted to operate on a member they do not
member is not allowed belong to
58 Unmatched user The user in the quote operation does not match the user
at login
70 Quote has already been canceled Quote has already been canceled
99 Operation on behalf of another user Unauthorized user attempted to operate on a quote
is not permitted submitted by another user under the same member

nRequestID: returns the user quote operation request ID; this ID is specified by the user
upon quote operation.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.16. OnRspExecOrderInsert Method

This method is used to response to option exercise entry. When Member System
executed the entry of declaration and Trading System returned a response, this method will be
called.

Function Prototype:

void OnRspExecOrderinsert(
CShfeFtdcinputExecOrderField* pinputExecOrder,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pInputExecOrder: pointer to the declaration entry structure. The structure of option
exercise entry:

struct CShfeFtdclinputExecOrderField {
///Contract number
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;

44

Trading API & Market Data API Interface Specifications v2.00

/l/Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Local option exercise number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
///Quantity
TShfeFtdcVolumeType Volume;
/1/Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;

/l/position direction, i.e. whether buyer(long position) or seller (short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;

/l/flag for whether position is reserved after option exercrised, not used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;

///flag for whether position is closed automatically after option exercrised
TShfeFtdcExecOrderCloseFlagType CloseFlag;

///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/I/\P Address
TShfeFtdcIPAddressType IPAddress;
///Mac Address
TShfeFtdcMacAddressType MacAddress;

b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

¥

Possible errors:

Error ID

2

3

4

15

22

23

26

31

33

35

Error message

Contract cannot be found
Member cannot be found

Client cannot be found

Client didn’t open an account at
this member

The exchange’s data is not in the
synchronized state

The settlement group’s data is not
in synchronized date

This operation is prohibited by
current state

Insufficient client positions at
closing

Insufficient member positions at
closing

Account cannot be found

Possible cause

Contract cannot be found in the option exercise
Member cannot be found in the option exercise

Client cannot be found in the option exercise

Client in the option exercise didn’t open an account at
the designated member

Initialization of Trading System is not completed,
please try later

Initialization of Trading System is not completed,
please try later

The contract is not in continuous trading or business
processing status

The client has insufficient position quota for execution
of declaration submission

The member has insufficient position quota for
execution of declaration submission

The required fund account

45

Trading API & Market Data API Interface Specifications v2.00

36 Insufficient funding No trading permission for the specified contract, client,
or user found
37 Invalid quantity Invalid quantity in option exercise
51 No trading permission No trading permission for the specified contract, client,
or user
54 Session not found User not logged in
57 Operation on behalf of another The user conducts operation on behalf of member to
member is not allowed whom he is not subordinate
58 Unmatched user User in the option exercise does not match user at the
time of login
79 Unsupported order type This order type is not supported by the exchange
89 Error field in the execution of Illegal field values in the execution of declaration
declaration operation operation (out-of-range of the enumerated value)
91 Duplicate option exercise The local announcement execution number in option
exercise is not unique
94 Option exercise is only used in The contract in option exercise is non-option contract
option
101 Clearing members cannot make The member in the execution of declaration is a clearing
transactions member
102 Corresponding clearing member No clearing member associated with the execution of
not found declaration member could be found
127 Not within the declaration period ~ Not within the contract’s delivery period (exercise
window)
129 Execution of declarations must not The offset flag in the execution of declaration must
use the open position flag indicate closing
146 Only holders of long positions are ~ Only option buyers are allowed to exercise
allowed to exercise
1005 No record The contract record referenced in the execution of

declaration is missing

nRequestID: returns the user option exercise entry request 1D; this ID is specified by the

user upon option exercise entry.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.17. OnRspExecOrderAction Method

Response to execution of announcement operation. Execution of declaration operations
include cancellation, suspension, activation, and modification of execution of declarations.
When Member System executes the declaration operation and Trading System returns a
response, this method will be called.

Function Prototype:

void OnRspExecOrderAction(
CShfeFtdcExecOrderActionField* pExecOrderAction,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pExecOrderAction: pointer to the option exercise operation structure. The structure:

struct CShfeFtdcExecOrderActionField {
///Option exercise number
TShfeFtdcExecOrderSysIDType ExecOrderSysiD;

46

Trading API & Market Data API Interface Specifications v2.00

/l/Local execution announcement number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
///Order operation flag
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP Address
TShfeFtdcIPAddressType IPAddress;
///Mac Address
TShfeFtdcMacAddressType MacAddress;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:

Error ID
2
3
4
15
22
23
26
35
36
51

54
57

58

89

90

Error message

Contract cannot be found
Member cannot be found
Client cannot be found

The client has not opened an
account with this member

Exchange data is not synchronized

Settlement group data is not
synchronized

This operation is prohibited by
current state

Account not found
Insufficient funds

No trading permission

Session not found

Operation on behalf of another
member is not allowed

User mismatch

Field error in the execution of
declaration
Field error in the execution of

Possible cause

Contract cannot be found in the option exercise
Member cannot be found in the option exercise

Client cannot be found in the option exercise

Client in the in the option exercise didn’t open an
account at the designated member

Initialization of Trading System is not completed, please
try later

Initialization of Trading System is not completed, please
try later

The contract is not in continuous trading or business
processing status

The required fund account cannot be found

Insufficient funds in the fund account

No trading permission for the specified contract, the
client under the contract, or the user

User not logged in

The user conducts operation on behalf of member to
whom he is not subordinate

The user in the execution announcement operation does
not match the user at login

The execution of declaration contains invalid field
values

Illegal field values in the execution of declaration

47

Trading API & Market Data API Interface Specifications v2.00

declaration operation operation (out-of-range of the enumerated value)

92 The execution of declaration has The declaration operation to be executed has been
been canceled canceled

93 Execution of declaration cannot be The option exercise to be operated can not be found
found

127 Not within the declaration period ~ Not within the contract delivery period (exercise

window)
1005 No record The contract record corresponding to the declaration

operation is missing

nRequestID: returns the user declaration operation execution request ID; this ID is
specified by the user upon execution of declaration operation.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.18. OnRspQryPartAccount Method

This method is the response to query for member’ funds. When Member System gives
the instructions to query for member’s funds and Trading System returns a response, this
method will be called.

Function Prototype:

void OnRspQryPartAccount(
CShfeFtdcRspPartAccountField* pRspPartAccount,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pRspPartAccount: pointer to the structure of response to member’s funds. The structure:

Structure CShfeFtdcRspPartAccountField {
/l[Trading day
TShfeFtdcDateType TradingDay;
///Settlement group ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
/l/Last settlement reserve
TShfeFtdcMoneyType PreBalance;
//[Total current margin
TShfeFtdcMoneyType CurrMargin;
///Profit & loss on closing-out of position
TShfeFtdcMoneyType CloseProfit;
///Option premium income and expenditure
TShfeFtdcMoneyType Premium;
///Deposit Amount
TShfeFtdcMoneyType Deposit;
/l/Withdrawal amount
TShfeFtdcMoneyType Withdraw;
///Reserve funds for futures settlement
TShfeFtdcMoneyType Balance;
///Withdrawable funds
TShfeFtdcMoneyType Available;
///Fund account

48

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcAccountiIDType AccountlD;
//[Frozen margin

TShfeFtdcMoneyType FrozenMargin;
//[Frozen premium
TShfeFtdcMoneyType FrozenPremium;
///Basic reserve funds
TShfeFtdcMoneyType BaseReserve;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session not found User not logged in
57 Operation on behalf of another Querying data under other members is not permitted

member is not allowed
80 User does not have this permission Only trading users are authorized to perform queries
Queries are limited to a single member account

nRequestID: returns the user request ID for user’s query for funds; this ID is specified
by the user upon sending query instruction.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.19. OnRspQryOrder Method
This method is for order query request. After Member System sends out order query

instruction and while the Trading System sends back the response, this method will be called.
Function Prototype:

void OnRspQryOrder(
CShfeFtdcOrderField* pOrder,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pOrder: pointer to the order information/message structure. The structure:

struct CshfeFtdcOrderField {
/l/Business day
TshfeFtdcDateType TradingDay;
/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Order ID
TShfeFtdcOrderSysIDType OrderSysID;

49

Trading API & Market Data API Interface Specifications v2.00

///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;

//[Transaction user’s ID

TShfeFtdcUserlDType UserlD;
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Order Price Type
TShfeFtdcOrderPriceTypeType OrderPriceType;
/l/buy-sell direction

TShfeFtdcDirectionType Direction;
///Combination offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination Hedge Flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price

TShfeFtdcPriceType LimitPrice;

/IVolume

TShfeFtdcVolumeType VolumeTotalOriginal;
/I/Expiry Type

TShfeFtdcTimeConditionType TimeCondition;
///GTD Date, NOT USED

TShfeFtdcDateType GTDDate;

///Match volume condition type
TShfeFtdcVolumeConditionType VolumeCondition;
///Minimum Volume

TShfeFtdcVolumeType MinVolume;
//[Trigger/Contingent Condition
TShfeFtdcContingentConditionType ContingentCondition;
///Stop loss Price, NOT USED
TShfeFtdcPriceType StopPrice;

///[Forced close reasons
TShfeFtdcForceCloseReasonType ForceCloseReason;
/l/Local order ID

TShfeFtdcOrderLocallDType OrderLocallD;
///Auto Suspend flag

TShfeFtdcBoolType IsAutoSuspend;

///Order Source

TShfeFtdcOrderSourceType OrderSource;
///Order Status

TShfeFtdcOrderStatusType OrderStatus;
/l/Order Type

TShfeFtdcOrderTypeType OrderType;
/l[Today’s trade volume

TShfeFtdcVolumeType VolumeTraded;
///Remaining volume

TShfeFtdcVolumeType VolumeTotal;

//lorder date

TShfeFtdcDateType InsertDate;

/l/Entry time

TShfeFtdcTimeType InsertTime;

/l/Activation time

TShfeFtdcTimeType ActiveTime;

50

Trading API & Market Data API Interface Specifications v2.00

¥

/l/Suspension time

TShfeFtdcTimeType SuspendTime;
/l/Last amendment time
TShfeFtdcTimeType UpdateTime;
/l/Cancellation time

TShfeFtdcTimeType CancelTime;

///Last modified trading user ID
TShfeFtdcUserlDType ActiveUserID;
///Priority

TShfeFtdcPriorityType Priority;
/l/Sequence number by time order
TShfeFtdcTimeSortIDType TimeSortID;
/l/Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///Action day

TShfeFtdcDateType ActionDay;

///IP address

TShfeFtdcIPAddressType IPAddress;
///Mac address

TShfeFtdcMacAddressType MacAddress;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {

///Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted ~ The conditions under other members cannot be queried

80

by other members
User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the user request ID for order query; this ID is specified by the user

upon sending query instruction.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.20. OnRspQryQuote Method

This function is the response to query for quote. When Member System gives the

instructions to query for quote and Trading System returns a response, this method will be
called.
Function Prototype:

void OnRspQryQuote(

51

Trading API & Market Data API Interface Specifications v2.00

CShfeFtdcQuoteField* pQuote,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,

bool bisLast);

Parameters:
pQuote: pointer to the quote message structure. The structure:

struct CShfeFtdcQuoteField {
///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
/IIVolume
TShfeFtdcVolumeType Volume;
/l/Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocallDType QuotelocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
/l/Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price
TShfeFtdcPriceType BidPrice;
/l/Seller's combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
/l/Seller's combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
/l/Seller’s price
TShfeFtdcPriceType AskPrice;
//[Entry time
TShfeFtdcTimeType InsertTime;
/l/Cancellation time
TShfeFtdcTimeType CancelTime;
//[Transaction time
TShfeFtdcTimeType TradeTime;
/l/Buyer’s order number
TShfeFtdcOrderSysIDType BidOrderSysID;
/l/Seller’s order number
TShfeFtdcOrderSysIDType AskOrderSysID;
/l/Settlement member’'s number

52

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcParticipantIDType ClearingPartID;

///Local business ID

TShfeFtdcBusinessLocallDType BusinessLocallD;

///Action day

TShfeFtdcDateType ActionDay;

/I/IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

///Quote request ID

TShfeFtdcOrderSysIDType QuoteDemandID;
b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted The conditions under other members cannot be queried

by other members
80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the user request ID for quote request; this ID is specified by the
user upon query for quote.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.21. OnRspQryTrade Method

This method is for the reply on matched order/ trade query. After Member System sends
out matched order (i.e. trade) query instruction and while the Trading System sends back the
response, this method will be called.

Function Prototype:

void OnRspQryTrade(
CShfeFtdcTradeField* pTrade,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pTrade: pointer to the matched order information structure. The structure:

struct CShfeFtdcTradeField {
///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;

53

Trading API & Market Data API Interface Specifications v2.00

+

/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
///Matched order ID
TShfeFtdcTradelDType TradelD;
///buy-sell direction
TShfeFtdcDirectionType Direction;
///Order ID

TShfeFtdcOrderSysIDType OrderSysID;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;
/l[Trading Role

TShfeFtdcTradingRoleType TradingRole;
///Fund account

TShfeFtdcAccountiIDType AccountlD;
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Offset flag

TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag

TShfeFtdcHedgeFlagType HedgeFlag;
///Price

TShfeFtdcPriceType Price;

/IIVolume

TShfeFtdcVolumeType Volume;
/l[Transaction time

TShfeFtdcTimeType TradeTime;

/l[Trade Type / order matching type
TShfeFtdcTradeTypeType TradeType;
//[Trade Price Source / Order Matching Price Source
TShfeFtdcPriceSourceType PriceSource;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;

/l/Local order ID
TShfeFtdcOrderLocallDType OrderLocallD;
/l/Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/l/Action day

TShfeFtdcDateType ActionDay;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {

¥

///Error 1D

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

Possible errors:

54

Trading API & Market Data API Interface Specifications v2.00

Error ID Error message Possible cause

54 Session Not Found User Not Logged In

57 Operation shall not be conducted ~ The conditions under other members cannot be queried
by other members

80 User is not authorized to do so Only trading users are allowed to perform the query; the

query can only be performed for a single member

nRequestID: returns the user request ID for matched order query; this ID is specified by
the user upon sending fund query instruction.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.22. OnRspQryClient Method

This method is for the reply on member client query. After Member System sends out
client query instruction and while the Trading System sends back the response, this method
will be called.

Function Prototype:

void OnRspQryClient(
CShfeFtdcRspClientField* pRspClient,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pRspClient: pointer to the client information/message structure. The structure:

struct CShfeFtdcRspClientField {
/l/Client ID
TShfeFtdcClientIDType ClientID;
///Client name
TshfeFtdcPartyNameType ClientName;
/I/'D Type
TShfeFtdcldCardTypeType IdentifiedCardType;
///Original ID
TShfeFtdcldentifiedCardNoV1Type Useless;
//[Trading Role
TShfeFtdcTradingRoleType TradingRole;
///Client type
TShfeFtdcClientTypeType ClientType;
/l/Active or not flag
TShfeFtdcBoolType IsActive;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///ID Number
TShfeFtdcldentifiedCardNoType IdentifiedCardNo;
b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message

55

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted The conditions under other members cannot be queried
by other members
80 User is not authorized to do so Only trading users are allowed to perform the query; the

query can only be performed for a single member

nRequestID: returns the request ID of the member-client query; this ID is specified by
the user upon performing the member-client query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.23. OnRspQryPartPosition Method

This method is for the reply on member holding position query. After Member System
sends out member holding position query instruction and while the Trading System sends
back the response, this method will be called.

Function Prototype:

void OnRspQryPartPosition(
CShfeFtdcRspPartPositionField* pRspPartPosition,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pRspPartPosition: pointer to the member holding position response
information/message structure. The structure:

struct CShfeFtdcRspPartPositionField {
/l/Business day
TShfeFtdcDateType TradingDay;
/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Holding position over-under direction
TShfeFtdcPosiDirectionType PosiDirection;
///Previous day holding position
TShfeFtdcVolumeType YdPosition;
/l/Current day holding position
TShfeFtdcVolumeType Position;
///Long frozen
TShfeFtdcVolumeType LongFrozen;
///Short frozen
TShfeFtdcVolumeType ShortFrozen;
/l/Previous day long frozen
TShfeFtdcVolumeType YdLongFrozen;
/l/Previous day short frozen
TShfeFtdcVolumeType YdShortFrozen;

56

Trading API & Market Data API Interface Specifications v2.00

/l/Instrument/contract ID

TShfeFtdcinstrumentIDType InstrumentiD;

///Member ID

TShfeFtdcParticipantIDType ParticipantiD;

//[Trading Role

TShfeFtdcTradingRoleType TradingRole;
b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
//[Error ID
TShfeFtdcErrorlIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted The conditions under other members cannot be queried

by other members

80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the request ID of the member position query; this ID is specified by

the user upon performing the member position query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.24. OnRspQryClientPosition Method

This method is for the reply on client holding position query. After Member System

sends out client holding position query instruction and while the Trading System sends back

the response, this method will be called.
Function Prototype:

void OnRspQryClientPosition(
CShfeFtdcRspClientPositionField* pRspClientPosition,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pRspClientPosition: pointer to the member holding position
information/message structure. The structure:

response

struct CShfeFtdcRspClientPositionField {
///Business day
TShfeFtdcDateType TradingDay;
/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;

57

Trading API & Market Data API Interface Specifications v2.00

b

///Holding position over-under direction
TShfeFtdcPosiDirectionType PosiDirection;
///Previous day holding position
TShfeFtdcVolumeType YdPosition;
/l/Current day holding position
TShfeFtdcVolumeType Position;

///Long frozen

TShfeFtdcVolumeType LongFrozen;
/l/Short frozen

TShfeFtdcVolumeType ShortFrozen;
/l/Previous day long frozen
TShfeFtdcVolumeType YdLongFrozen;
/l/Previous day short frozen
TShfeFtdcVolumeType YdShortFrozen;
///Buying volume on that day
TShfeFtdcVolumeType BuyTradeVolume;
///Selling volume on that day
TShfeFtdcVolumeType SellTradeVolume;
/l/Cost of carry

TShfeFtdcMoneyType PositionCost;
///Yesterday’s cost of carry
TShfeFtdcMoneyType YdPositionCost;
/[/Margin used

TShfeFtdcMoneyType UseMargin;
//[Frozen margin

TShfeFtdcMoneyType FrozenMargin;
///Margin frozen by the long
TShfeFtdcMoneyType LongFrozenMargin;
///Margin frozen by the short
TShfeFtdcMoneyType ShortFrozenMargin;
//[Frozen premium

TShfeFtdcMoneyType FrozenPremium;
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {

/l/Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted The conditions under other members cannot be queried

80

by other members
User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

58

Trading API & Market Data API Interface Specifications v2.00

nRequestID: returns the request ID of the member position query; this ID is specified by
the user upon performing the client position query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.25. OnRspQrylInstrument Method

This method is for the reply on contract query. After Member System sends out contract
query instruction and while the Trading System sends back the response, this method will be
called.

Function Prototype:

void OnRspQrylnstrument(
CShfeFtdcRspinstrumentField* pRspinstrument,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pRsplInstrument: pointer to the contract structure. The structure:

struct CShfeFtdcRspinstrumentField {
/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
///Product ID
TShfeFtdcProductiDType ProductID;
/l/Product suite’s ID
TShfeFtdcProductGroupIlDType ProductGrouplD;
///Basic commodity ID
TShfeFtdcinstrumentIDType UnderlyinglnstriD;
/l/Product type
TShfeFtdcProductClassType ProductClass;
/l[Type of open interest
TShfeFtdcPositionTypeType PositionType;
/1/Strike price
TShfeFtdcPriceType StrikePrice;
///Option type
TShfeFtdcOptionsTypeType OptionsType;
/l/Contract multiplier
TShfeFtdcVolumeMultipleType VolumeMultiple;
/l/Contract multiplier for basic commodity
TShfeFtdcUnderlyingMultipleType UnderlyingMultipl
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
/l/Contract name
TShfeFtdcinstrumentNameType InstrumentName;
///Delivery year
TShfeFtdcYearType DeliveryYear;
///Delivery month
TShfeFtdcMonthType DeliveryMonth;
///Month in advance
TShfeFtdcAdvanceMonthType AdvanceMonth;
///ls trading right now?
TShfeFtdcBoolType IsTrading;

59

Trading API & Market Data API Interface Specifications v2.00

/l/Creation date

TShfeFtdcDateType CreateDate;

///Listing day

TShfeFtdcDateType OpenDate;

///[Expiring date

TShfeFtdcDateType ExpireDate;

///Date of starting delivery

TShfeFtdcDateType StartDelivDate;

/l[The last delivery day

TShfeFtdcDateType EndDelivDate;
/l/Benchmark price for listing
TShfeFtdcPriceType BasisPrice;

/l/The Max. market order placement volume
TShfeFtdcVolumeType MaxMarketOrderVolume;
///Minimum Order Quantity for Market Orders
TShfeFtdcVolumeType MinMarketOrderVolume;
///The Max. limit order placemnt volume
TShfeFtdcVolumeType MaxLimitOrderVolume;
//[The Min. limit order placement volume
TShfeFtdcVolumeType MinLimitOrderVolume;
///Minimum Price Fluctuation
TShfeFtdcPriceType PriceTick;

///Position opened by natural person during delvery month
TShfeFtdcMonthCountType AllowDelivPersonOpen;
/l/Currency ID

TShfeFtdcCurrencylDType CurrencylD;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the contract query request ID; this ID is specified by the user upon

performing the contract query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.26. OnRspQrylInstrumentStatus Method

This method is for the reply on contract trading status query. After Member System

sends out contract trading status query instruction and while the Trading System sends back

the response, this method will be called.

Function Prototype:

void OnRspQrylnstrumentStatus(
CShfeFtdcinstrumentStatusField* plnstrumentStatus,

60

Trading API & Market Data API Interface Specifications v2.00

CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pInstrumentStatus: pointer to the contract trading status structure. The structure:

struct CshfeFtdcinstrumentStatusField {
/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
/l/Contract/Instrument Trading Status
TShfeFtdcinstrumentStatusType InstrumentStatus;
///Trading Phase/Stage/Segment ID
TShfeFtdcTradingSegmentSNType TradingSegmentSN;
/l[Time of entering current status
TShfeFtdcTimeType EnterTime;
/l//[Reason for entering current status
TShfeFtdcInstStatusEnterReasonType EnterReason;
///Entry Date of Current Status
TShfeFtdcDateType EnterDate;

b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the request ID of the contract trading status query; this ID is
specified by the user upon performing the contract trading status query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.27. OnRspQryBulletin Method

This method is for the reply on the Exchange bulletin/public announcement query. After
Member System sends out the query instruction for the Exchange bulletin/public
announcement and while the Trading System sends back the response, this method will be
called.

Function Prototype:

void OnRspQryBulletin(
CShfeFtdcBulletinField* pBulletin,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

61

Trading API & Market Data API Interface Specifications v2.00

Parameters:
pBulletin: pointer to the Exchange bulletin/public announcement structure. The structure:

struct CShfeFtdcBulletinField {
/l/Business day
TShfeFtdcDateType TradingDay;
///Bulletin number
TShfeFtdcBulletinIDType BulletinID;
///Sequence number
TShfeFtdcSequenceNoType SequenceNo;
///Bulletin type
TShfeFtdcNewsTypeType NewsType;
/l/Urgency
TShfeFtdcNewsUrgencyType NewsUrgency;
/l[Transmission time
TShfeFtdcTimeType SendTime;
///Message digest
TShfeFtdcAbstractType Abstract;
/l/Source of message
TShfeFtdcComeFromType ComeFrom;
///Message body
TShfeFtdcContentType Content;
///WEB address
TShfeFtdcURLLinkType URLLink;
///Market ID
TShfeFtdcMarketIDType MarketlD;

b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the request ID of the exchange bulletin query; this ID is specified
by the user upon performing the exchange bulletin query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.28. OnRspQryMarketData Method

This method is for the reply on general market data query. After Member System sends
out the query instruction for market data and while the Trading System sends back the
response, this method will be called.

Function Prototype:

void OnRspQryMarketData(

62

Trading API & Market Data API Interface Specifications v2.00

CShfeFtdcMarketDataField* pMarketData,
CShfeFtdcRspinfoField* pRspinfo,

int nRequestID,

bool bisLast);

Parameters:
pMarketData: pointer to the market data structure. The structure:

struct CShfeFtdcMarketDataField {
///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
/l[The latest price
TShfeFtdcPriceType LastPrice;
/l/Settlement of yesterday
TShfeFtdcPriceType PreSettlementPrice;
///Close of yesterday
TShfeFtdcPriceType PreClosePrice;
/l[Yesterday’s open interest
TShfeFtdcLargeVolumeType PreOpeninterest;
/l[Today’s open price
TShfeFtdcPriceType OpenPrice;
/l[The highest price
TShfeFtdcPriceType HighestPrice;
//[The lowest price
TShfeFtdcPriceType LowestPrice;
/IIVolume
TShfeFtdcVolumeType Volume;
/l[Turnover
TShfeFtdcMoneyType Turnover;
///Open Interest
TShfeFtdcLargeVolumeType Openlinterest;
//[Today’s closing
TShfeFtdcPriceType ClosePrice;
///[Today’s settlement
TShfeFtdcPriceType SettlementPrice;
///Upward limit price
TShfeFtdcPriceType UpperLimitPrice;
///Downward limit price
TShfeFtdcPriceType LowerLimitPrice;
///Yesterday’s delta value
TShfeFtdcRatioType PreDelta;
///Today’s delta value
TShfeFtdcRatioType CurrDelta;
///Last amendment time
TShfeFtdcTimeType UpdateTime;
/l[The last modified millisecond
TShfeFtdcMillisecType UpdateMillisec;
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///Action day

63

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcDateType ActionDay;
b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the request ID of the standard market data query; this ID is
specified by the user upon performing the standard market data query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.29. OnRspQryHedgeVolume Method

Hedging quota response. This method will be called when the Trading System returns a
response after the Member System executes a hedging quota query.
Function Prototype:

void OnRspQryHedgeVolume(
CShfeFtdcHedgeVolumeField* pHedgeVolume,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pHedgeVolume: points to the hedging quota volume structure. The structure:

struct CShfeFtdcHedgeVolumeField {
///Business day
TShfeFtdcDateType TradingDay;
/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
/l/Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
/l/Initial applied quantity for long hedging quota, in lots.
TShfeFtdcVolumeType LongVolumeOriginal;
///Initial applied quantity for short hedging quota, in lots.
TShfeFtdcVolumeType ShortVolumeOriginal;
///Long hedging quota, in lots.
TShfeFtdcVolumeType LongVolume;

64

Trading API & Market Data API Interface Specifications v2.00

///Short hedging quota, in lots.
TShfeFtdcVolumeType ShortVolume;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted The conditions under other members cannot be queried

by other members
80 User is not authorized to do so Only trading users are allowed to perform the query;
the query can only be performed for a single member.
When the exchange enables cross-member joint
hedging, only the administrator can perform this
operation

nRequestID: returns the request ID of the hedge quota execution query; this ID is
specified by the user upon performing the hedging quota execution query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.30. OnRtnTrade Method
Trade return. When a trade is executed, the Trading System will notify corresponding

member systems, and this method will be called.
Function Prototype:

void OnRtnTrade(CShfeFtdcTradeField* pTrade);

Parameters:
pTrade: pointer to the trade return structure. Note: some fields in the trade return are not
used, and the Trading System returns null for those unused fields. The structure:

struct CShfeFtdcTradeField {
/l/Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
///Matched order ID
TShfeFtdcTradelDType TradelD;
/l/buy-sell direction
TShfeFtdcDirectionType Direction;
///Order ID
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;

65

Trading API & Market Data API Interface Specifications v2.00

/l/Client ID

TShfeFtdcClientIDType ClientID;
/l[Trading role, not used
TShfeFtdcTradingRoleType TradingRole;
///Fund account, not used
TShfeFtdcAccountiIDType AccountlD;
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
/1/Offset flag

TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag

TShfeFtdcHedgeFlagType HedgeFlag;
///Price

TShfeFtdcPriceType Price;

/IIVolume

TShfeFtdcVolumeType Volume;
///Transaction time

TShfeFtdcTimeType TradeTime;

/l[Trade Type / order matching type
TShfeFtdcTradeTypeType TradeType;
///Source of transaction price, not used
TShfeFtdcPriceSourceType PriceSource;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;

///Local order ID
TShfeFtdcOrderLocallDType OrderLocallD;
/l/Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit, NOT USED
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///Action day

TShfeFtdcDateType ActionDay;

2.1.31. OnRtnOrder Method

Order return. When an order is inserted, executed or for other reasons (i.e. partial match)
so that the order status changes, the Trading System will automatically inform Member
System, and this method will be called.

Function Prototype:

void OnRtnOrder(CShfeFtdcOrderField* pOrder);

Parameters:
pOrder: pointer to the order return structure. Note: some fields in the order return is not
used, the Trading System will return a null value for those used fields. The structure:

struct CShfeFtdcOrderField {
///Business day, not used
TShfeFtdcDateType TradingDay;

66

Trading API & Market Data API Interface Specifications v2.00

/l/Settlement group’s ID, not used
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number, not used
TShfeFtdcSettlementIiDType SettlementID;
///Order ID

TShfeFtdcOrderSysIDType OrderSysID;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;

/l[Transaction user’s ID

TShfeFtdcUserIDType UserlD;
/l/Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///Order Price Type
TShfeFtdcOrderPriceTypeType OrderPriceType;
///buy-sell direction

TShfeFtdcDirectionType Direction;
///Combination offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination Hedge Flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price

TShfeFtdcPriceType LimitPrice;

/IIVolume

TShfeFtdcVolumeType VolumeTotalOriginal;
/l/Expiry Type

TShfeFtdcTimeConditionType TimeCondition;
///GTD DATE

TShfeFtdcDateType GTDDate;

///Match volume condition type
TShfeFtdcVolumeConditionType VolumeCondition;
///Minimum Volume

TShfeFtdcVolumeType MinVolume;
//[Trigger/Contingent Condition
TShfeFtdcContingentConditionType ContingentCondition;
/l/Stop-loss price

TShfeFtdcPriceType StopPrice;

/l/Forced close reasons
TShfeFtdcForceCloseReasonType ForceCloseReason;
///Local order ID

TShfeFtdcOrderLocallDType OrderLocallD;
///Auto Suspend flag

TShfeFtdcBoolType IsAutoSuspend;

/l/Source of order, not used
TShfeFtdcOrderSourceType OrderSource;
///Order Status

TShfeFtdcOrderStatusType OrderStatus;
///Order Type

TShfeFtdcOrderTypeType OrderType;
///Volume on that day, not used
TShfeFtdcVolumeType VolumeTraded;
///Remaining volume

TShfeFtdcVolumeType VolumeTotal;

67

Trading API & Market Data API Interface Specifications v2.00

/l/order date

TShfeFtdcDateType InsertDate;

/l/Entry time

TShfeFtdcTimeType InsertTime;
///activation time, NOT USED
TShfeFtdcTimeType ActiveTime;
///Suspension time, NOT USED
TShfeFtdcTimeType SuspendTime;

/l/Last amendment time
TShfeFtdcTimeType UpdateTime;

/l[Time of cancelation, not used
TShfeFtdcTimeType CancelTime;

/l/Last modified trading user ID
TShfeFtdcUserlDType ActiveUserID;
///Priority, NOT USED
TShfeFtdcPriorityType Priority;
///Sequence number by time order, NOT USED
TShfeFtdcTimeSortIDType TimeSortID;
/l/Settlement member ID, NOT USED
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit, NOT USED
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///Action day

TShfeFtdcDateType ActionDay;

/I/'P Address, not used
TShfeFtdcIPAddressType IPAddress;
///MAC Address, not used
TShfeFtdcMacAddressType MacAddress;

2.1.32. OnRtnQuote Method

Quote return. When an order is inserted or executed so that the price quote changes, the
Trading System will automatically inform Member System, and this method will be called.
Function Prototype:

void OnRtnQuote(CShfeFtdcQuoteField* pQuote);

Parameters:
pQuote: pointer to the price quote return structure. The structure:

struct CShfeFtdcQuoteField {
///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID

68

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcParticipantIDType ParticipantiD;
///Client ID

TShfeFtdcClientIDType ClientID;

//[Transaction user’s ID

TShfeFtdcUserIDType UserlD;

/IIVolume

TShfeFtdcVolumeType Volume;
/l/Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocallDType QuotelocallD;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
/l/Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
/l/Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price

TShfeFtdcPriceType BidPrice;

/l/Seller’'s combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
/l/Seller's combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
/l/Seller’s price

TShfeFtdcPriceType AskPrice;

//[Entry time

TShfeFtdcTimeType InsertTime;

/l/Cancellation time

TShfeFtdcTimeType CancelTime;

/l[Transaction time

TShfeFtdcTimeType TradeTime;

/l/Buyer’s order number
TShfeFtdcOrderSysIDType BidOrderSysID;
/l/Seller’s order number
TShfeFtdcOrderSysIDType AskOrderSysID;
/l/Settlement member’'s number
TShfeFtdcParticipantIDType ClearingPartID;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/l/Action day

TShfeFtdcDateType ActionDay;

///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;
///Quote request ID

TShfeFtdcOrderSysIDType QuoteDemandID;

2.1.33. OnRtnExecOrder Method

Order exercise return. This method will be called when the Member System performs an
option exercise entry or option exercise operation resulting in a change of option exercise

69

Trading API & Market Data API Interface Specifications v2.00

status, and the Trading System will proactively notify the Member System.
Function Prototype:

void OnRtnExecOrder(CShfeFtdcExecOrderField* pExecOrder);

Parameters:
pExecOrder: pointer to the order execution return structure. The structure:

struct CShfeFtdcExecOrderField {
/l/Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementiDType SettlementID;
/l/Contract number
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
/l/Local annoncement execution number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Position direction, i.e. whether buyer(long position) or seller(short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
///[Flag indicating whether to retain futures positions after option exercise, not
used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Option exercise number
TShfeFtdcExecOrderSysIDType ExecOrderSysID;
///Order date
TShfeFtdcDateType InsertDate;
//[Entry time
TShfeFtdcTimeType InsertTime;
/l/Cancellation time
TShfeFtdcTimeType CancelTime;
/l/[Execution result
TShfeFtdcExecResultType ExecResult;
/l/Settlement member’'s number
TShfeFtdcParticipantIDType ClearingPartID;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;

70

Trading API & Market Data API Interface Specifications v2.00

/l/Action day

TShfeFtdcDateType ActionDay;

/I/IP address

TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

2.1.34. OnRtnInstrumentStatus Method

Contract return. When the contract status changes, the Trading System will automatically
inform Member System, and this method will be called.
Function Prototype:

void OnRtninstrumentStatus(
CShfeFtdcinstrumentStatusField* pinstrumentStatus);

Parameters:
pInstrumentStatus: pointer to the contract status structure. The structure:

struct CShfeFtdclinstrumentStatusField {
/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///Contract/Instrument Trading Status
TShfeFtdcInstrumentStatusType InstrumentStatus;
//[Trading Phase/Stage/Segment ID
TShfeFtdcTradingSegmentSNType TradingSegmentSN;
/l[Time of entering current status
TShfeFtdcTimeType EnterTime;
///[Reason for entering current status
TShfeFtdcInstStatusEnterReasonType EnterReason;
///Entry Date of Current Status
TShfeFtdcDateType EnterDate;

2.1.35. OnRtnInsInstrument Method

New contract notification. After successfully logging into the Member System, the
Trading System will notify the Member System of newly added contracts via the public
stream.

Function Prototype:

void OnRtninsinstrument(CShfeFtdcinstrumentField* pinstrument);

Parameters:
pInstrument: pointer to the contract structure. The structure:

struct CShfeFtdclinstrumentField {

71

Trading API & Market Data API Interface Specifications v2.00

/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
///Product ID

TShfeFtdcProductiDType ProductID;

/l/Product suite’s ID
TShfeFtdcProductGroupIlDType ProductGrouplD;
///Basic commodity ID
TShfeFtdcinstrumentIDType UnderlyinglnstriD;
/l/Product type

TShfeFtdcProductClassType ProductClass;
/l[Type of open interest
TShfeFtdcPositionTypeType PositionType;
/l/Strike price

TShfeFtdcPriceType StrikePrice;

///Option type

TShfeFtdcOptionsTypeType OptionsType;
/l/Contract multiplier
TShfeFtdcVolumeMultipleType VolumeMultiple;
/l/Contract multiplier for basic commodity
TShfeFtdcUnderlyingMultipleType UnderlyingMultiple;
//[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
/l/Contract name
TShfeFtdcinstrumentNameType InstrumentName;
///Delivery year

TShfeFtdcYearType DeliveryYear;

///Delivery month

TShfeFtdcMonthType DeliveryMonth;

///Month in advance
TShfeFtdcAdvanceMonthType AdvanceMonth;
///ls trading right now?

TShfeFtdcBoolType IsTrading;

///Currency ID

TShfeFtdcCurrencylDType CurrencylD;

2.1.36. OnRtnBulletin Method

Announcement. When the Exchange sends announcement through the Trading System,

the Trading System will automatically inform Member System, and this method will be called.

Function Prototype:

void OnRtnBulletin(CShfeFtdcBulletinField* pBulletin);

Parameters:

pBulletin: pointer to the announcement structure. The structure:

struct CShfeFtdcBulletinField {

///Business day

TShfeFtdcDateType TradingDay;
///Bulletin number
TShfeFtdcBulletinIDType BulletinID;
/l/Sequence number

72

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcSequenceNoType SequenceNo;
///Bulletin type

TShfeFtdcNewsTypeType NewsType;
///Urgency

TShfeFtdcNewsUrgencyType NewsUrgency;
/l[Transmission time

TShfeFtdcTimeType SendTime;
/l/Message digest

TShfeFtdcAbstractType Abstract;
/l/Source of message
TShfeFtdcComeFromType ComeFrom;
///Message body

TShfeFtdcContentType Content;

///WEB address

TShfeFtdcURLLinkType URLLink;
///Market ID

TShfeFtdcMarketIDType MarketlD;

2.1.37. OnRtnFlowMessageCancel Method

Data stream rollback notification. After the Trading System performs a disaster recovery
switch and when the user logs back into the Trading System and subscribes to a specific data
stream (either private or public), the Trading System will proactively notify the Member
System that certain messages in the data stream have been invalidated or canceled. At this
time, this method will be called.

Function Prototype:

void OnRtnFlowMessageCancel(
CShfeFtdcFlowMessageCancelField* pFlowMessageCancel);

Parameters:
pFlowMessageCancel: pointer to the data stream cancellation structure. The structure:

struct CShfeFtdcFlowMessageCancelField{
/l/Serial number in sequence
TShfeFtdcSequenceSeriesType SequenceSeries;
///Business day
TShfeFtdcDateType TradingDay;
///Datacenter ID
TShfeFtdcDataCenterlDType DataCenterlD;
///Starting sequence number of rollback
TShfeFtdcSequenceNoType StartSequenceNo;
///Ending sequence number of rollback
TShfeFtdcSequenceNoType EndSequenceNo;
b
SequenceSeries: Datastream ID of rollback occured (private stream or public stream)
Message range of rollback: (StartSequenceNo,EndSequenceNo]

2.1.38. OnErrRtnOrderInsert Method

73

Trading API & Market Data API Interface Specifications v2.00

Order entry error return: sent automatically by the Trading System to Member System.
When the Member System sends an order entry instruction and an error occurs, the Trading
System will proactively notify the Member System. At this time, this method will be called.
Function Prototype:

void OnErrRtnOrderinsert(
CShfeFtdcinputOrderField* plnputOrder,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pInputOrder: points to the order entry structure, including the input data submitted
during the order entry. The structure:

struct CShfeFtdcinputOrderField {
///Order number, this field will be returned by Trading System.
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///[Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///Order Price Type
TShfeFtdcOrderPriceTypeType OrderPriceType;
/l/buy-sell direction
TShfeFtdcDirectionType Direction;
///Combination Offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination Hedge Flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
//[Price
TShfeFtdcPriceType LimitPrice;
///Volume
TShfeFtdcVolumeType VolumeTotalOriginal;
/l/Expiry Type
TShfeFtdcTimeConditionType TimeCondition;
///GTD DATE
TShfeFtdcDateType GTDDate;
///Match volume condition type
TShfeFtdcVolumeConditionType VolumeCondition;
///Minimum Volume
TShfeFtdcVolumeType MinVolume;
/l[Trigger/Contingent Condition
TShfeFtdcContingentConditionType ContingentCondition;
/1/Stop-loss price
TShfeFtdcPriceType StopPrice;
/l/[Forced close reasons
TShfeFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TShfeFtdcOrderLocallDType OrderLocallD;
///Auto Suspend flag

74

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcBoolType IsAutoSuspend;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/I/IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message

TShfeFtdcErrorMsgType ErrorMsg;

¥

Possible errors:

Error ID
2

3
4
6
12
15
16
17

19

20
21

22
23
26
31

32
33

34
35
36
37

Error message
Contract not found
Member not found
Client not found
Invalid order fields

Duplicate order
Client not registered with member

10C orders only allowed in
continuous trading

GFA orders only allowed in call
auction

Quantity constraint must be IOC

GTD order expired

Minimum quantity exceeds order
quantity

Exchange data not synchronized

Clearing group data not
synchronized

Operation not allowed in current
state

Insufficient client position

Client position limit exceeded
Insufficient member position

Member position limit exceeded
Account not found

Insufficient funds

Invalid quantity

Possible cause

The contract specified in the order could not be found
The member specified in the order could not be found
The client specified in the order could not be found
The order contains invalid field values (e.g., out-of-
range enumerations) or a non-force-close order
includes a force-close reason

The local order ID in the order is duplicated

The client in the order is not registered under the
specified member

An IOC order was submitted outside the continuous
trading session

A GFA order was submitted outside the call auction
phase

The time-in-force for a non-any-quantity order must be
10C

The GTD date in the GTD order has already expired
The minimum quantity specified exceeds the total
order quantity

The Trading System is not fully initialized. Please retry
later

The Trading System is not fully initialized. Please retry
later

The contract is not in continuous trading, call auction,
or call auction equilibrium state

The client does not have enough position to place the
close order

The client exceeded their open position limit

The member does not have enough position to place
the close order

The member exceeded their position limit

The account specified in the order could not be found
The account does not have sufficient funds

The order quantity is not a positive multiple of the
minimum order quantity or exceeds the maximum

75

Trading API & Market Data API Interface Specifications v2.00

48 Price not a multiple of tick size The order price is not a valid multiple of the contract’s
tick size
49 Price exceeds upper limit The order price exceeds the contract’s upper limit
50 Price below lower limit The order price is below the contract’s lower limit
51 No trading permission No trading permission for the contract, client, or user
52 Close-only permission Only close orders are permitted for this member, client,
or user
53 Trading role not assigned The member does not hold the required trading role for
the client on the contract
54 Session not found The user is not logged in
57 Operation on another member not The user attempted an operation for a non-affiliated
allowed member
58 User mismatch The user in the order does not match the logged-in user
72 Natural person cannot open Natural person clients are not allowed to open positions
positions in the delivery month
78 GTD date not specified GTD order lacks a specified GTD date
79 Unsupported order type The exchange does not support this type of order
83 Stop orders allowed only in Stop orders are not allowed outside the continuous
continuous trading trading phase
84 Stop orders must be IOC or GFD Stop orders must have a time condition of [OC or GFD
95 Stop order must specify stop price Stop price is missing in the stop order
96 Insufficient hedge quota Client’s hedge quota is insufficient for hedge order
98 Force-close orders require admin ~ Only admin users may submit force-close orders
101 Clearing members cannot trade The member type of the order is a clearing member
102 Clearing member not found Cannot find the clearing member corresponding to the
order member
103 Intraday hedge position cannot be Hedge positions opened today cannot be closed using
closed close-today orders
114 Best price orders cannot queue Best price orders must have time-in-force = I0C
131 Client exceeds intraday open limit Client exceeded the intraday open limit for the contract
132 Client exceeds per-second order Client exceeded order limit per second on the product
limit
153 Market orders must be GFD or Market orders must have time-in-force = GFD or IOC
10C
154 Market orders allowed only in Market orders are not allowed outside continuous
continuous trading trading
155 Market orders only supported for =~ Market orders not allowed on non-futures/options
futures and options contracts
1005 No record The contract record associated with the order is

missing

2.1.39. OnErrRtnOrderAction Method

Order operation error return. When the Member System sends an order operation

instruction and an error occurs, the Trading System will proactively notify the Member

System. At this time, this method will be called.
Function Prototype:

void OnErrRtnOrderAction(
CShfeFtdcOrderActionField* pOrderAction,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pOrderAction: pointer to the order operation structure, including the input data while

76

Trading API & Market Data API Interface Specifications v2.00

submitting the order operation and the order ID returned from the Trading System. The
structure:

struct CShfeFtdcOrderActionField {
/1/Order number, this field will be returned by Trading System.
TShfeFtdcOrderSysIDType OrderSysID;
/l/Local order ID
TShfeFtdcOrderLocallDType OrderLocallD;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
/l/Price, NOT USED
TShfeFtdcPriceType LimitPrice;
///Change in quantity, NOT USED
TShfeFtdcVolumeType VolumeChange;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit, NOT USED
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract not found The contract specified in the order could not be found
3 Member not found The member specified in the order could not be found
4 Client not found The client specified in the order could not be found
8 Invalid field value in order The order contains invalid field values (e.g., out-of-
operation range enumerations)
15 Client not registered with member The client in the order is not registered under the
specified member
16 IOC orders only allowed in An IOC order was submitted outside the continuous
continuous trading trading session
17 GFA orders only allowed in call A GFA order was submitted outside the call auction
auction phase
20 GTD order expired The GTD date in the GTD order has already expired
22 Exchange data not synchronized The Trading System is not fully initialized. Please retry
later

77

Trading API & Market Data API Interface Specifications v2.00

23 Clearing group data not
synchronized

24 Order not found

26 Operation not allowed in current
state

28 Order fully filled

29 Order already canceled

30 Insufficient quantity for
modification

31 Insufficient client position

32 Client position limit exceeded

33 Insufficient member position

34 Member position limit exceeded

35 Account not found

36 Insufficient funds

37 Invalid quantity

48 Price not a multiple of tick size

49 Price exceeds upper limit

50 Price below lower limit

51 No trading permission

52 Close-only permission

54 Session not found

57 Operation on another member not
allowed

58 User mismatch

71 Operation on derivative order not
allowed

72 Natural person cannot open
positions

76 Order already suspended

77 Order already activated

79 Unsupported order type

83 Stop orders allowed only in
continuous trading

95 Stop order must specify stop price

96 Insufficient hedge quota

98 Force-close orders require admin

99 Operation on behalf of another
user not permitted

131 Client exceeds intraday open limit

133 Client exceeds per-second

cancelation limit

The Trading System is not fully initialized. Please retry
later

The specified order to be operated on cannot be found
The contract is not in continuous trading, call auction,
or call auction equilibrium state

The order has already been fully executed

The order has already been canceled

The remaining order quantity would be less than 0 after
modification

The client does not have enough position to place the
close order

The client exceeded their open position limit

The member does not have enough position to place
the close order

The member exceeded their position limit

The account specified in the order could not be found
The account does not have sufficient funds

The order quantity is not a positive multiple of the
minimum order quantity or exceeds the maximum

The order price is not a valid multiple of the contract’s
tick size

The order price exceeds the contract’s upper limit

The order price is below the contract’s lower limit

No trading permission for the contract, client, or user
Only close orders are permitted for this member, client,
or user

The user is not logged in

The user attempted an operation for a non-affiliated
member

The user in the order does not match the logged-in user
The user attempted to operate on a derivative order

Natural person clients are not allowed to open positions
in the delivery month

The order has already been suspended at the time of the
suspension request

The order has already been activated at the time of the
activation request

The exchange does not support this type of order

Stop orders are not allowed outside the continuous
trading phase

Stop price is missing in the stop order

Client’s hedge quota is insufficient for hedge order
Only admin users may submit force-close orders

The user attempted to operate on an order submitted by
a different user under the same member without proper
authorization

Client exceeded the intraday open limit for the contract
Client exceeded the allowed number of cancellations
for a specific product within one second

2.1.40. OnErrRtnQuotelnsert Method

Erroneous quote entry return. When the Member System sends a quote entry instruction

78

Trading API & Market Data API Interface Specifications v2.00

and an error occurs, the Trading System will proactively notify the Member System. At this
time, this method will be called.
Function Prototype:

void OnErrRtnQuotelnsert(
CShfeFtdcinputQuoteField* plnputQuote,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:

pInputQuote: pointer to the input quote structure, including the input data for quote
entry operation and the quote number returned from the Trading System. The input quote
structure:

struct CShfeFtdcinputQuoteField {
///Quoto number,this field will be returned by Trading System.
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
/IIVolume
TShfeFtdcVolumeType Volume;
/l/Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
/l/Local quoto number
TShfeFtdcOrderLocallDType QuotelocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
///Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
/l/Buyer’s price
TShfeFtdcPriceType BidPrice;
/l/Seller's combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
///Seller’s combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
/l/Seller’s price
TShfeFtdcPriceType AskPrice;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/I/IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {

79

Trading API & Market Data API Interface Specifications v2.00

/l/Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

¥

Possible errors:

Error ID

2

3

4

7

13

15

22

23

26

31

32

33

34

35

36

37

48

49

50

51

52

53

54
57

58
72

79
96

98

101

Error message

Contract cannot be found
Member cannot be found

Client cannot be found

Quote field error

Duplicate quote

Client didn’t open an account at
this member

The exchange’s data is not in the
synchronized state

The settlement group’s data is not
in synchronized date

This operation is prohibited by
current state

Insufficient client position for
closing

Exceeded client position limit

Insufficient member position for
closing
Exceeded member position limit

Account not found
Insufficient funds
Invalid quantity

Price not a multiple of minimum
price fluctuation

Price exceeds upper limit price
Price falls below lower limit price
Not authorized to trade

Close-only

No such trading role

Session Not Found

Operation shall not be conducted
by other members

Unmatched user

Opening positions not allowed for
natural persons

Order type that is not supported
Insufficient hedge quota

Forced liquidation orders must be
used by administrators

Clearing members are not allowed
to trade

Possible cause

Contract in quote not found

Member in quote not found

Client in quote not found

Invalid field value in quote (enum value out of range)
Duplicate local quote ID in the quote

Client in quote has not opened an account with the
specified member

Initialization of Trading System is not completed,
please try later

Initialization of Trading System is not completed,
please try later

Contract trading status is neither continuous trading,
call auction order entry, nor call auction balancing
Client’s position insufficient

Quote causes client’s general position to exceed the
limit
Member’s position insufficient

Quote causes member’s general position to exceed the
limit

Fund account used in quote not found

Insufficient funds in the fund account

The quote quantity is not a positive multiple of the
minimum order quantity or exceeds the maximum
Quote price is not an integer multiple of the contract’s
minimum price fluctuation

Quote price exceeds contract’s upper limit price
Quote price falls below contract’s lower limit price
No trading permission for specified contract or client
for the specified contract or the user

Only the member, client, or user has permission to
close positions on the specified contract

On the designated contract, member doesn’t has the
trading role corresponding to such client

User Not Logged In

User operating on behalf of a member not associated
with them

User in quote does not match the logged-in user
Natural person client initiates an opening order in the
delivery month

The Exchange does not support this order type
Client’s hedging quota insufficient when submitting
quote

Non-administrator user submitted a forced liquidation
order

Member type in quote is a clearing member

80

Trading API & Market Data API Interface Specifications v2.00

102 Corresponding clearing member Clearing member corresponding to the quote’s member
not found not found

103 Same-day hedging positions Hedging positions should not use close-today quotes
cannot be closed for closing

131 Exceeded client’s intraday Client’s opening quantity on a contract exceeds the
contract opening limit intraday opening limit

132 Exceeded client’s per-second Number of client orders on a product within one
order limit for the product second exceeds the limit

1005 No record Contract record corresponding to the quote is missing

2.1.41. OnErrRtnQuoteAction Method

Erroneous quote return. When the Member System sends a quote instruction and an error
occurs, the Trading System will proactively notify the Member System. At this time, this
method will be called.

Function Prototype:

void OnErrRtnQuoteAction(
CShfeFtdcQuoteActionField* pQuoteAction,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pQuoteAction: pointer to the quote structure, including the input data for quote request
and the quote number returned from Trading System. The quote structure:

struct CShfeFtdcQuoteActionField {
///Quote number,this field will be returned by Trading System.
TShfeFtdcQuoteSysIDType QuoteSysID;
///Local quote number
TShfeFtdcOrderLocallDType QuotelocallD;
/l/Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {

81

Trading API & Market Data API Interface Specifications v2.00

/l/Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in quote operation not found
3 Member cannot be found Member in quote operation not found
4 Client cannot be found Client in quote operation not found
8 Order operation field error Invalid field value in derived orders from quote

operation (e.g., price is not a valid float or not within
the valid range)

9 Quote operation field error Invalid field value in quote operation (enum value out
of range or operation flag is modify, activate, or
suspend)

15 Client didn’t open an account at Client has not opened an account with the specified

this member member

22 The exchange’s data is not in the Initialization of Trading System is not completed,

synchronized state please try later

23 The settlement group’s data is not Initialization of Trading System is not completed,

in synchronized date please try later
25 Quote not found Quote to be operated on cannot be found
26 This operation is prohibited by For activation operations, the contract trading status is
current state neither continuous trading, auction order, nor auction
equilibrium

For other operations, the trading status is neither
continuous trading nor auction order

28 Order already fully filled Orders derived from the quote have been fully filled
29 Order already canceled Orders derived from the quote have been canceled
35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
51 Not authorized to trade No trading permission for specified contract or client
for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in quote operation does not match the logged-in
user
70 Quote has already been canceled Quote has already been canceled
99 Cannot operate on behalf of other Unauthorized user operating on quotes submitted by
users other users under the same member

2.1.42. OnErrRtnExecOrderInsert Method

Option exercise entry error return. When the Member System sends an option exercise
and an error occurs, the Trading System will proactively notify the Member System. At this
time, this method will be called.

Function Prototype:

void OnErrRtnExecOrderinsert(
CShfeFtdcinputExecOrderField* plnputExecOrder,
CShfeFtdcRspinfoField* pRspinfo);

82

Trading API & Market Data API Interface Specifications v2.00

Parameters:
pInputExecOrder: pointer to the option exercise structure. The structure:

struct CShfeFtdcinputExecOrderField {
/l/Contract number
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Local annoncement execution number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
/IIVolume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
/l/position direction, i.e. whether buyer(long position) or seller(short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
/l/Flag indicating whether to retain futures positions after option exercise, not
used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
/I/Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract cannot be found in the option exercise
3 Member cannot be found Member cannot be found in the option exercise
4 Client cannot be found Client cannot be found in the option exercise
15 Client didn’t open an account at Client in the in the option exercise didn’ open an
this member account at the designated member
22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later

83

Trading API & Market Data API Interface Specifications v2.00

23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later
26 This operation is prohibited by The contract trading status is neither continuous trading
current state nor trading business processing
31 Insufficient client position for Client’s position insufficient when entering option
closing exercise
33 Insufficient member position for ~ Member’s position insufficient when entering option
closing exercise
35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
37 Invalid quantity Invalid quantity in option exercise
51 Not authorized to trade No trading permission for specified contract or client
for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in option exercise does not match the logged-in
user
79 Order type that is not supported The Exchange does not support this order type
89 Option exercise field error Invalid field value in option exercise (enum value out
of range)
91 Duplicate option exercise Duplicate local option exercise ID in the option
exercise
94 Option exercise is allowed only Contract in option exercise is a non-option contract
for options
101 Clearing members are not allowed Member type in option exercise is a clearing member
to trade
102 Corresponding clearing member Clearing member corresponding to the option
not found exercise’s member not found
127 Not within declaration period Not within the contract delivery period (exercisable
period)
129 Option exercise or abandonment The offset flag in the execution of declaration must
cannot be opening orders indicate closing
146 Only holders of long positions can Only option buyers can exercise
exercise
1005 No record Contract record corresponding to the option exercise is
missing

2.1.43. OnErrRtnExecOrderAction Method

Option exercise operation error return. When the Member System sends an option
exercise operation instruction and an error occurs, the Trading System will proactively notify
the Member System. At this time, this method will be called.

Function Prototype:

void OnErrRtnExecOrderAction(
CShfeFtdcExecOrderActionField* pExecOrderAction,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pExecOrderAction: pointer to the option exercise operation structure. The structure:

struct CShfeFtdcExecOrderActionField {
///Option exercise number

84

Trading API & Market Data API Interface Specifications v2.00

+

TShfeFtdcExecOrderSysIDType ExecOrderSysiD;
///Local annoncement execution number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID

TShfeFtdcUserlDType UserlD;

///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {

///Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:

Error ID Error message Possible cause

2 Contract cannot be found Contract in option exercise operation not found

3 Member cannot be found Member in option exercise operation not found

4 Client cannot be found Client in option exercise operation not found

15 Client didn’t open an account at Client in option exercise operation has not opened an
this member account with the specified member

22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later

23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later

26 This operation is prohibited by The contract trading status is neither continuous trading
current state nor trading business processing

35 Account not found Required fund account not found

36 Insufficient funds Insufficient funds in the fund account

51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user

54 Session Not Found User Not Logged In

57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them

58 Unmatched user User in option exercise operation does not match the

logged-in user
89 Option exercise field error Invalid field value in option exercise
90 Error field in the execution of Invalid field value in option exercise operation (enum

85

Trading API & Market Data API Interface Specifications v2.00

92

93

127

1005

declaration opration value out of range or operation flag is modify, activate,
or suspend)

The execution of declaration has ~ The declaration operation to be executed has been

been canceled canceled

The execution of declaration can ~ The declaration operation to be executed cann not be

not be found found

Not within declaration period Not within the contract delivery period (exercisable
period)

No record Contract record corresponding to the option exercise

operation is missing

2.1.44. OnRspQryExecOrder Method

Option exercise query response. When the Trading System automatically informs the
Member System, this method will be called.
Function Prototype:

void OnRspQryExecOrder(

CShfeFtdcExecOrderField* pExecOrder,
CShfeFtdcRspinfoField* pRspinfo,

int nRequestID,

bool bilsLast);

Parameters:

pExecOrder: pointer to the option exercise structure. The structure:

struct CShfeFtdcExecOrderField {

///Business day

TShfeFtdcDateType TradingDay;

///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number

TShfeFtdcSettlementiDType SettlementID;

/l/Contract number

TShfeFtdcinstrumentIDType InstrumentID;

///Member ID

TShfeFtdcParticipantIDType ParticipantiD;

///Client ID

TShfeFtdcClientIDType ClientID;

/l[Transaction user’s ID

TShfeFtdcUserIDType UserlD;

/l/Local annoncement execution number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
/IVolume

TShfeFtdcVolumeType Volume;

///Offset flag

TShfeFtdcOffsetFlagType OffsetFlag;

///Hedge Flag

TShfeFtdcHedgeFlagType HedgeFlag;

/l/position direction, i.e. whether buyer(long position) or seller(short position)
made this application

TShfeFtdcPosiDirectionType PosiDirection;

/l/Flag indicating whether to retain futures positions after option exercise, not
used

86

Trading API & Market Data API Interface Specifications v2.00

b

TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
///Option exercise number
TShfeFtdcExecOrderSysIDType ExecOrderSysID;
/l/order date

TShfeFtdcDateType InsertDate;

//[Entry time

TShfeFtdcTimeType InsertTime;

/l/Cancellation time

TShfeFtdcTimeType CancelTime;

/l/[Execution result

TShfeFtdcExecResultType ExecResult;
/l/Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///Action day

TShfeFtdcDateType ActionDay;

/I/IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {

///Error ID

TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted The conditions under other members cannot be queried

80

by other members
User is not authorized to do so Only trading users are allowed to perform the query;
the query can only be performed for a single member

nRequestID: returns the user option exercise request ID; this ID is specified by the user

upon submitting an option exercise query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.45. OnRspQryExchangeRate Method

Exchange rate query response. This method will be called when the Member System

sends an exchange rate query request and the Trading System returns a response.
Function Prototype:

void OnRspQryExchangeRate(

87

Trading API & Market Data API Interface Specifications v2.00

CShfeFtdcRspExchangeRateField* pRspExchangeRate,
CShfeFtdcRspinfoField* pRspinfo,

int nRequestID,

bool bisLast);

Parameters:
pRspExchangeRate: pointer to the exchange rate response information structure. The
structure:

struct CShfeFtdcRspExchangeRateField {
/l/Business day
TShfeFtdcDateType TradingDay;
///Currency ID
TShfeFtdcCurrencylDType CurrencylD;
///foreign exchange unit
TshfeFtdcRateUnitType RateUnit;
/l/central parity rate
TShfeFtdcExRatePriceType RatePrice;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the user exchange rate query request ID; this ID is specified by the
user when submitting an exchange rate query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.46. OnRspAbandonExecOrderInsert Method
Option abandonment response. This method will be called when the Member System

sends an option abandonment entry request and the Trading System returns a response.
Function Prototype:

void OnRspAbandonExecOrderinsert(
CShfeFtdcinputAbandonExecOrderField* plnputAbandonExecOrder,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameters:
pInputAbandonExecOrder: pointer to the option abandonment structure. The structure:

struct CShfeFtdcinputAbandonExecOrderField {
/l//Contract number

88

Trading API & Market Data API Interface Specifications v2.00

¥

TShfeFtdcinstrumentIDType InstrumentID;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;

/l[Transaction user’s ID

TShfeFtdcUserIDType UserlD;

///Option abandonment local ID
TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
/IIVolume

TShfeFtdcVolumeType Volume;

///Offset flag

TShfeFtdcOffsetFlagType OffsetFlag;

///Hedge flag

TShfeFtdcHedgeFlagType HedgeFlag;
/l/Direction of the position applying for abandon; only long positions can apply for
abandon

TShfeFtdcPosiDirectionType PosiDirection;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {

/l/Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:

Error ID Error message Possible cause

2 Contract cannot be found Contract in option abandonment not found

3 Member cannot be found Member in option abandonment not found

4 Client cannot be found Client in option abandonment not found

15 Client didn’t open an account at Client in option abandonment has not opened an
this member account with the specified member

22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later

23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later

26 This operation is prohibited by The contract trading status is neither continuous trading
current state nor trading business processing

31 Insufficient client position for Client’s position insufficient when entering option
closing abandonment

33 Insufficient member position for ~ Member’s position insufficient when entering option
closing abandonment

35 Account not found Required fund account not found

36 Insufficient funds Insufficient funds in the fund account

89

Trading API & Market Data API Interface Specifications v2.00

37 Invalid quantity Invalid quantity in option abandonment
51 Not authorized to trade No trading permission for specified contract or client
for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in option abandonment does not match the
logged-in user
79 Order type that is not supported The Exchange does not support this order type
101 Clearing members are not allowed Member type in option abandonment is a clearing
to trade member
102 Corresponding clearing member Clearing member corresponding to the order’s member
not found not found
121 Option abandonment field error Invalid field value in option abandonment
123 Duplicate option abandonment Duplicate local option abandonment ID in the option
abandonment
126 Option abandonment is allowed Contract in option abandonment is a non-option
only for options contract
128 Only holders of long positions can Only option buyers can enjoy execution waiver
enjoy execution waiver
129 Option exercise or abandonment Offset flag in option abandonment must be limited to
cannot be opening orders close
149 Option abandonment applications Trading day is not option expiration day

can only be submitted on option
expiration day
1005 No record Contract record corresponding to the option
abandonment is missing

nRequestID: returns the user option abandonment request ID; this ID is specified by the
user upon an option abandonment.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.47. OnRspAbandonExecOrderAction Method

Option abandonment operation response, including cancellation, suspension, activation,
and modification of option abandonment. This method will be called when the Member
System sends an option abandonment operation request and the Trading System returns a
response.

Function Prototype:

void OnRspAbandonExecOrderAction(
CShfeFtdcAbandonExecOrderActionField* pAbandonExecOrderAction,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pAbandonExecOrderAction: pointer to the option abandonment structure. The
structure:

struct CShfeFtdcAbandonExecOrderActionField {
///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///Option abandonment local ID

90

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
///Flag of order operation

TShfeFtdcActionFlagType ActionFlag;

///Member ID

TShfeFtdcParticipantIDType ParticipantiD;

/l/Client ID

TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message

TShfeFtdcErrorMsgType ErrorMsg;

¥

Possible errors:

Error ID Error message Possible cause

2 Contract cannot be found Contract in option abandonment operation not found

3 Member cannot be found Member in option abandonment operation not found

4 Client cannot be found Client in option abandonment operation not found

15 Client didn’t open an account at Client in option abandonment operation has not opened
this member an account with the specified member

22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later

23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later

26 This operation is prohibited by The contract trading status is neither continuous trading
current state nor trading business processing

35 Account not found Required fund account not found

36 Insufficient funds Insufficient funds in the fund account

51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user

54 Session Not Found User Not Logged In

57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them

58 Unmatched user User in option abandonment operation does not match

the logged-in user
121 Option abandonment field error Invalid field value in option abandonment
122 Option abandonment operation Invalid field value in option abandonment operation

field error

(enum value out of range or operation flag is modify,
activate, or suspend)

91

Trading API & Market Data API Interface Specifications v2.00

124 The option abandonment has The option abandonment to be operated on has already
already been canceled been deleted
125 Option abandonment not found The option abandonment to be operated on was not
found
149 Option abandonment applications Trading day is not option expiration day

can only be submitted on option
expiration day
1005 No record The contract record corresponding to the option
abandonment operation is missing

nRequestID: returns the user option abandonment request 1D; this ID is specified by the
user upon submitting an option abandonment.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.48. OnRspQryAbandonExecOrder Method

Option abandonment query response. This method will be called when the Member
System sends an option abandonment query request and the Trading System returns a
response.

Function Prototype:

void OnRspQryAbandonExecOrder(
CShfeFtdcAbandonExecOrderField* pAbandonExecOrder,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pAbandonExecOrder: pointer to the option abandonment structure. The structure:

struct CShfeFtdcAbandonExecOrderField {
/l/Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
/l/Contract number
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Option abandonment Local ID
TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
/IVolume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
//[Direction of the position applying for abandon; only long positions can apply for

92

Trading API & Market Data API Interface Specifications v2.00

¥

abandon

TshfeFtdcPosiDirectionType PosiDirection;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
/l/order date

TShfeFtdcDateType InsertDate;

/l/Entry time

TShfeFtdcTimeType InsertTime;
/l/Cancellation time

TShfeFtdcTimeType CancelTime;

///Result of abandon execution
TShfeFtdcExecResultType AbandonExecResult;
/l/Settlement member’'s number
TShfeFtdcParticipantIDType ClearingPartID;
///Action day

TShfeFtdcDateType ActionDay;

///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {

///Error ID

TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted The conditions under other members cannot be queried

80

by other members
User is not authorized to do so Only trading users are allowed to perform the query;
the query can only be performed for a single member

nRequestID: returns the user option abandonment query request ID; this ID is specified

by the user upon submitting an option abandonment query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.49. OnRtnAbandonExecOrder Method

Option abandonment return. When the Member System performs an option abandonment

entry or operation resulting in a change of option abandonment status, the Trading System
will proactively notify the Member System. At this time, this method will be called.
Function Prototype:

void OnRtnAbandonExecOrder(

93

Trading API & Market Data API Interface Specifications v2.00

CShfeFtdcAbandonExecOrderField* pAbandonExecOrder);

Parameters:

pAbandonExecOrder: pointer to the option abandonment structure.

struct CShfeFtdcAbandonExecOrderField {

///Business day

TShfeFtdcDateType TradingDay;

/l/Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIDType SettlementID;
/l/Contract number

TShfeFtdcinstrumentIDType InstrumentID;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;

/l[Transaction user’s ID

TShfeFtdcUserIDType UserlD;

///Option abandonment Local ID
TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
/IIVolume

TShfeFtdcVolumeType Volume;

///Offset flag

TShfeFtdcOffsetFlagType OffsetFlag;

///Hedge Flag

TShfeFtdcHedgeFlagType HedgeFlag;
/l/Direction of the position applying for abandon; only long positions can apply for
abandon

TShfeFtdcPosiDirectionType PosiDirection;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
//lorder date

TShfeFtdcDateType InsertDate;

/l/Entry time

TShfeFtdcTimeType InsertTime;

/l/Cancellation time

TShfeFtdcTimeType CancelTime;

///Result of abandon execution
TShfeFtdcExecResultType AbandonExecResult;
/l/Settlement member’'s number
TShfeFtdcParticipantIDType ClearingPartID;
/l/Action day

TShfeFtdcDateType ActionDay;

///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

94

Trading API & Market Data API Interface Specifications v2.00

2.1.50. OnErrRtnAbandonExecOrderInsert Method

Option abandonment entry error return. When the Member System sends an option
abandonment entry instruction and an error occurs, the Trading System will proactively notify
the Member System. At this time, this method will be called.

Function Prototype:

void OnErrRtnAbandonExecOrderinsert(
CShfeFtdcinputAbandonExecOrderField* plnputAbandonExecOrder,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pInputAbandonExecOrder: pointer to the option abandonment entry structure.

struct CShfeFtdcinputAbandonExecOrderField {
/l/Contract number
TShfeFtdcinstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Option abandonment Local ID
TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
/IVolume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
/l/Direction of the position applying for abandon; only long positions can apply for
abandon
TshfeFtdcPosiDirectionType PosiDirection;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

¥

95

Trading API & Market Data API Interface Specifications v2.00

Possible errors:

Error ID Error message Possible cause
2 Contract cannot be found Contract in option abandonment not found
3 Member cannot be found Member in option abandonment not found
4 Client cannot be found Client in option abandonment not found
15 Client didn’t open an account at Client in option abandonment has not opened an
this member account with the specified member
22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later
23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later
26 This operation is prohibited by The contract trading status is neither continuous trading
current state nor trading business processing
31 Insufficient client position for Client’s position insufficient when entering option
closing abandonment
33 Insufficient member position for ~ Member’s position insufficient when entering option
closing abandonment
35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
37 Invalid quantity Invalid quantity in option abandonment
51 Not authorized to trade No trading permission for specified contract or client
for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in option abandonment does not match the
logged-in user
79 Order type that is not supported The Exchange does not support this order type
101 Clearing members are not allowed Member type in option abandonment is a clearing
to trade member
102 Corresponding clearing member Clearing member corresponding to the option
not found abandonment’s member not found
121 Option abandonment field error Invalid field value in option abandonment
123 Duplicate option abandonment Duplicate local option abandonment ID in the option
abandonment
126 Option abandonment is allowed Contract in option abandonment is a non-option
only for options contract
128 Only holders of long positions can Only option buyers can enjoy execution waiver
enjoy execution waiver
129 Option exercise or abandonment The offset flag in the execution of declaration must
cannot be opening orders indicate closing
149 Option abandonment applications Trading day is not option expiration day

can only be submitted on option
expiration day
1005 No record Contract record corresponding to the option
abandonment is missing

2.1.51. OnErrRtnAbandonExecOrderAction Method

Option abandonment operation error return. When the Member System sends an option
abandonment and an error occurs, the Trading System will proactively notify the Member
System. At this time, this method will be called.

Function Prototype:

96

Trading API & Market Data API Interface Specifications v2.00

void OnErrRtnAbandonExecOrderAction(
CShfeFtdcAbandonExecOrderActionField* pAbandonExecOrderAction,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pAbandonExecOrderAction: pointer to the option abandonment structure. The
structure:

struct CShfeFtdcAbandonExecOrderActionField {
///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///Option abandonment local ID
TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
/l/Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
///Error 1D
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option abandonment operation not found
3 Member cannot be found Member in option abandonment operation not found
4 Client cannot be found Client in option abandonment operation not found
15 Client didn’t open an account at Client in option abandonment has not opened an
this member account with the specified member
22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later
23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later
26 This operation is prohibited by The contract trading status is neither continuous trading
current state nor trading business processing
35 Account not found Required fund account not found

97

Trading API & Market Data API Interface Specifications v2.00

36 Insufficient funds Insufficient funds in the fund account
51 Not authorized to trade No trading permission for specified contract or client
for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in option abandonment operation does not match
the logged-in user
121 Option abandonment field error Invalid field value in option abandonment
122 Option abandonment operation Invalid field value in option abandonment operation
field error (enum value out of range or operation flag is modify,
activate, or suspend)
124 The option abandonment has The option abandonment to be operated on has already
already been canceled been deleted
125 Option abandonment not found The option abandonment to be operated on was not
found
149 Option abandonment applications Trading day is not option expiration day
can only be submitted on option
expiration day
1005 No record The contract record corresponding to the option

abandonment operation is missing

2.1.52. OnRspQuoteDemand Method

Quote request entry response. This method will be called when the Member System
sends a quote request and the Trading System returns a response.
Function Prototype:

void OnRspQuoteDemand(
CShfeFtdcQuoteDemandInfoField* pQuoteDemandIinfo,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pQuoteDemandlInfo: pointer to the quote request entry response structure. The structure:

struct CShfeFtdcQuoteDemandIinfoField {
///Business day
TShfeFtdcDateType TradingDay;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Instrument/contract ID
TShfeFtdcinstrumentIDType InstrumentID;
///quote demand local input ID
TShfeFtdcOrderLocallDType QuoteDemandLocallD;
/l/request time
TShfeFtdcTimeType DemandTime;
/l/Action day
TShfeFtdcDateType ActionDay;

98

Trading API & Market Data API Interface Specifications v2.00

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:

Error ID Error message

2 Contract cannot be found

3 Member cannot be found

4 Client cannot be found

15 Client didn’t open an account at
this member

22 The exchange’s data is not in the
synchronized state

23 The settlement group’s data is not
in synchronized date

26 This operation is prohibited by
current state

51 Not authorized to trade

53 No such trading role

54 Session Not Found

57 Operation shall not be conducted
by other members

58 Unmatched user

88 Target user to be operated on not
found

101 Clearing members are not allowed
to trade

148 Current market price is within

reasonable spread range, and quote
request is unnecessary

Possible cause

Contract in quote request not found

Member in quote request not found

Client in quote request not found

Client in quote request has not opened an account with
the specified member

Initialization of Trading System is not completed,
please try later

Initialization of Trading System is not completed,
please try later

Contract is untradeable or contract is not in continuous
trading status

No trading permission for specified contract or client
for the specified contract or the user

On the designated contract, member doesn’t has the
trading role corresponding to such client

User Not Logged In

User operating on behalf of a member not associated
with them

User in quote request does not match the logged-in user
User in quote request not found

Member type in quote request is a clearing member

There are existing buy-side orders, and price has
reached the upper limit;

There are existing sell-side orders, and price has
reached the lower limit;

Orders exist on both buy and sell sides, and the price
spread is within reasonable range

nRequestID: returns the user quotation entry request ID; this ID is specified by the user
upon performing the quotation entry.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.53. OnRtnQuoteDemandNotify Method
Quote request distribution. This method will be called when the Trading System

proactively notifies market maker users with corresponding permissions.
Function Prototype:

void OnRtnQuoteDemandNotify(
CShfeFtdcQuoteDemandNotifyField* pQuoteDemandNotify);

99

Trading API & Market Data API Interface Specifications v2.00

Parameters:

pQuoteDemandNotify: pointer to the quote request notification. The structure:

struct CShfeFtdcQuoteDemandNotifyField {

/l/Contract number
TShfeFtdcinstrumentIDType InstrumentiD;
///Quote request date

TShfeFtdcDateType DemandDay;

///Quote request time

TShfeFtdcTimeType DemandTime;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

2.1.54. OnRspOptionSelfCloseUpdate Method

Option self-hedge update response. This method will be called when the Member System
performs an option self-hedge update and the Trading System returns a response.

Function Prototype:

void OnRspOptionSelfCloseUpdate(

CShfeFtdcinputOptionSelfCloseField* plnputOptionSelfClose,
CShfeFtdcRspinfoField* pRspinfo,

int nRequestID,

bool bilsLast);

Parameters:

pInputOptionSelfClose: pointer to the option self-hedge update structure. The structure:

struct CShfeFtdclinputOptionSelfCloseField {

/l/Contract number

TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;

/l[Transaction user’s ID

TShfeFtdcUserIDType UserlD;

///Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloseLocallD;
/IIVolume

TShfeFtdcVolumeType Volume;

///Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

100

Trading API & Market Data API Interface Specifications v2.00

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:

Error ID Error message

2 Contract cannot be found

3 Member cannot be found

4 Client cannot be found

15 Client didn’t open an account at
this member

22 The exchange’s data is not in the
synchronized state

23 The settlement group’s data is not
in synchronized date

26 This operation is prohibited by
current state

37 Invalid quantity

51 Not authorized to trade

53 No such trading role

54 Session Not Found

57 Operation shall not be conducted
by other members

58 Unmatched user

79 Order type that is not supported

101 Clearing members are not allowed
to trade

102 Corresponding clearing member
not found

127 Not within declaration period

137 Option self-hedge field error

139 Duplicate option self-hedge
update

141 Option self-hedge update is only
applicable to options

144 This client’s SelfCloseFlag cannot
be retain option position

145 This client’s SelfCloseFlag cannot
be self-hedge option position

1005 No record

Possible cause

Contract for option self-hedge update not found
Member for option self-hedge update not found
Client for option self-hedge update not found

The client for option self-hedge update is not opened
under the specified member

Initialization of Trading System is not completed,
please try later

Initialization of Trading System is not completed,
please try later

Contract trading status is neither continuous trading nor
processing trading business

Invalid quantity in option self-hedge update

No trading permission for specified contract or client
for the specified contract or the user

On the designated contract, member doesn’t has the
trading role corresponding to such client

User Not Logged In

User operating on behalf of a member not associated
with them

User in option self-hedge update does not match the
logged-in user

The Exchange does not support this order type
Member type requesting option self-hedge update is a
clearing member

Clearing member corresponding to option self-hedge
update’s member not found

The futures position resulting from the option self-
hedge exercised by the option seller can only be
submitted during the delivery period (exercise window)
Option self-hedge update contains invalid field values
(enumeration value out of range)

Duplicate local option self-hedge ID in the option self-
hedge update

The contract in the option self-hedge update is not an
option contract

Only market makers can submit retain option position
requests

Market makers can only submit retain option position
requests

Contract record corresponding to the option self-hedge
update is missing

nRequestID: returns the user option self-hedge update request ID; this ID is specified by
the user upon performing an option self-hedge update.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

101

Trading API & Market Data API Interface Specifications v2.00

2.1.55. OnErrRtnOptionSelfCloseUpdate Method

Option self-hedge update error return. When the Member System performs an option
self-hedge update and an error occurs, the Trading System will proactively notify the Member
System. At this time, this method will be called.

Function Prototype:

void OnErrRtnOptionSelfCloseUpdate(
CShfeFtdcinputOptionSelfCloseField* plnputOptionSelfClose,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pInputOptionSelfClose: pointer to the option self-hedge update structure. The structure:

struct CShfeFtdclinputOptionSelfCloseField {
/l/Contract number
TShfeFtdcinstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloseLocallD;
/IIVolume
TShfeFtdcVolumeType Volume;
/I/Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

¥

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract for option self-hedge update not found
3 Member cannot be found Member for option self-hedge update not found
4 Client cannot be found Client for option self-hedge update not found
15 Client didn’t open an account at The client for option self-hedge update is not opened

102

Trading API & Market Data API Interface Specifications v2.00

this member under the specified member
22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later
23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later
26 This operation is prohibited by Contract trading status is neither continuous trading nor
current state processing trading business
37 Invalid quantity Invalid quantity in option self-hedge update
51 Not authorized to trade No trading permission for specified contract or client
for the specified contract or the user
53 No such trading role On the designated contract, member doesn’t has the
trading role corresponding to such client
57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in option self-hedge update does not match the
logged-in user
79 Order type that is not supported The Exchange does not support this order type
101 Clearing members are not allowed Member type requesting option self-hedge update is a
to trade clearing member
102 Corresponding clearing member Clearing member corresponding to option self-hedge
not found update’s member not found
127 Not within declaration period The futures position resulting from the option self-

hedge exercised by the option seller can only be
submitted during the delivery period (exercise window)

137 Option self-hedge field error Option self-hedge update contains invalid field values
(enumeration value out of range)

139 Duplicate option self-hedge Duplicate local option self-hedge ID in the option self-
update hedge update

141 Option self-hedge update is only ~ The contract in the option self-hedge update is not an
applicable to options option contract

144 This client’s SelfCloseFlag cannot Only market makers can submit retain option position
be retain option position requests

145 This client’s SelfCloseFlag cannot Market makers can only submit retain option position
be self-hedge option position requests

1005 No record Contract record corresponding to the option self-hedge

update is missing

2.1.56. OnRtnOptionSelfCloseUpdate Method

Option self-hedge update return. When the Member System performs an option self-
hedge update resulting in a change to the option self-hedge table, the Trading System will
proactively notify the Member System. At this time, this method will be called.

Function Prototype:

void OnRtnOptionSelfCloseUpdate(
CShfeFtdcOptionSelfCloseField* pOptionSelfClose);

Parameters:
pOptionSelfClose: pointer to the option self-hedge structure. The structure:

struct CShfeFtdcOptionSelfCloseField {
/l/Business day
TShfeFtdcDateType TradingDay;
/l/Settlement group’s ID

103

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number

TShfeFtdcSettlementIDType SettlementID;
/f/Contract number

TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;

/l/Client ID

TShfeFtdcClientIDType ClientID;

//[Transaction user’s ID

TShfeFtdcUserlDType UserlD;

///Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloseLocallD;
///Volume

TShfeFtdcVolumeType Volume;

/I/Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;

///Local business ID

TShfeFtdcBusinessLocallDType BusinessLocallD;
/I/IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Option self-hedge result

TShfeFtdcExecResultType SelfCloseResult;

/l/order date

TShfeFtdcDateType InsertDate;

/l/Entry time

TShfeFtdcTimeType InsertTime;

/l/Cancellation time

TShfeFtdcTimeType CancelTime;

/l/Settlement member’'s number
TShfeFtdcParticipantIDType ClearingPartID;
///Action day

TShfeFtdcDateType ActionDay;

2.1.57. OnRspOptionSelfCloseAction Method

Option self-hedge operation response, including the cancellation, suspension, activation,
and modification of option self-hedge. This method will be called when the Member System

performs an option self-hedge operation and the Trading System returns a response.

Function Prototype:

void OnRspOptionSelfCloseAction(

CShfeFtdcOptionSelfCloseActionField* pOptionSelfCloseAction,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,

104

Trading API & Market Data API Interface Specifications v2.00

bool bilsLast);

Parameters:
pOptionSelfCloseAction: pointer to the option self-hedge operation structure. The structure:

struct CShfeFtdcOptionSelfCloseActionField{
///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloseLocallD;
///Option self-hedge operation flag
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

+

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspiInfoField {
//[Error ID
TShfeFtdcErrorlIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option self-hedge operation not found
3 Member cannot be found Member in option self-hedge operation not found
4 Client cannot be found Client in option self-hedge operation not found
15 Client didn’t open an account at Client in option self-hedge operation has not opened an
this member account with the specified member
22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later
23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later
26 This operation is prohibited by The contract trading status is neither in continuous
current state trading nor in trading business processing state
51 Not authorized to trade No trading permission for the specified contract, or the
client on the specified contract, or the trader
53 No such trading role On the designated contract, member doesn’t has the

trading role corresponding to such client

105

Trading API & Market Data API Interface Specifications v2.00

57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in option self-hedge operation does not match the
logged-in user
138 Option self-hedge operation field Invalid field value in option self-hedge operation
error (enum value out of range or operation flag is modify,
activate, or suspend)
140 Option self-hedge update has been Option self-hedge to be operated on has been deleted
canceled
142 Option self-hedge not found Option self-hedge to be operated on cannot be found
143 Option self-hedge operation must ~ Option self-hedge operation type error

be deletion

nRequestID: returns the user option self-hedge request ID; this ID is specified by the
user upon performing an option self-hedge operation.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.58. OnErrRtnOptionSelfCloseAction Method

Option self-hedge operation error return. When the Member System performs an option
self-hedge operation and an error occurs, the Trading System will proactively notify the
Member System. At this time, this method will be called.

Function Prototype:

void OnErrRtnOptionSelfCloseAction(
CShfeFtdcOptionSelfCloseActionField* pOptionSelfCloseAction,
CShfeFtdcRspinfoField* pRspinfo);

Parameters:
pOptionSelfCloseAction: pointer to the option self-hedge operation structure. The
structure:

struct CShfeFtdcOptionSelfCloseActionField{
///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
/l/Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloselLocallD;
///Option self-hedge operation flag
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Operation of local number
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address

106

Trading API & Market Data API Interface Specifications v2.00

¥

TShfeFtdcMacAddressType MacAddress;

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {

///Error ID

TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option self-hedge operation not found
3 Member cannot be found Member in option self-hedge operation not found
4 Client cannot be found Client in option self-hedge operation not found
15 Client didn’t open an account at Client in option self-hedge operation has not opened an
this member account with the specified member
22 The exchange’s data is not in the Initialization of Trading System is not completed,
synchronized state please try later
23 The settlement group’s data is not Initialization of Trading System is not completed,
in synchronized date please try later
26 This operation is prohibited by The contract trading status is neither in continuous
current state trading nor in trading business processing state
51 Not authorized to trade No trading permission for the specified contract, or the
client on the specified contract, or the trader
53 No such trading role On the designated contract, member doesn’t has the
trading role corresponding to such client
57 Operation shall not be conducted ~ User operating on behalf of a member not associated
by other members with them
58 Unmatched user User in option self-hedge operation does not match the
logged-in user
138 Option self-hedge operation field Invalid field value in option self-hedge operation
error (enum value out of range or operation flag is modify,
activate, or suspend)
140 Option self-hedge update has been Option self-hedge to be operated on has been deleted
canceled
142 Option self-hedge not found Option self-hedge to be operated on cannot be found
143 Option self-hedge operation must ~ Option self-hedge operation type error

be deletion

2.1.59. OnRspQryOptionSelfClose Method

Option self-hedge query response. This method will be called when the Member System

sends an option self-hedge query request and the Trading System returns a response.
Function Prototype:

void OnRspQryOptionSelfClose(

CShfeFtdcOptionSelfCloseField* pOptionSelfClose,
CShfeFtdcRspinfoField* pRspinfo,

int nRequestID,

bool bilsLast);

Parameters:

107

Trading API & Market Data API Interface Specifications v2.00

pOptionSelfClose: pointer to the option self-hedge structure. The structure:

struct CShfeFtdcOptionSelfCloseField {
///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIiDType SettlementID;
/l/Contract number
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
/l/Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloselLocallD;
///Volume
TShfeFtdcVolumeType Volume;
///Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Option self-hedge result
TShfeFtdcExecResultType SelfCloseResult;
/l/order date
TShfeFtdcDateType InsertDate;
//[Entry time
TShfeFtdcTimeType InsertTime;
/l/Cancellation time
TShfeFtdcTimeType CancelTime;
/l/Settlement member’'s number
TShfeFtdcParticipantIDType ClearingPartID;
/l/Action day
TShfeFtdcDateType ActionDay;

b

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRsplinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;
b

Possible errors:

108

Trading API & Market Data API Interface Specifications v2.00

Error ID Error message Possible cause

54 Session Not Found User Not Logged In

57 Operation shall not be conducted The conditions under other members cannot be queried
by other members

80 User is not authorized to do so Only trading users are allowed to perform the query;

the query can only be performed for a single member

nRequestID: returns the user option self-hedge query request ID; this ID is specified by
the user upon submitting the option self-hedge query.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.60. OnRspAuthenticate Method

This method is only for proprietary members and is used for authentication before
proprietary members collect trading terminal information.

Terminal authentication response. This method will be called when the proprietary
Member System performs terminal authentication and the Trading System returns a response.
Function Prototype:

void OnRspAuthenticate(
CShfeFtdcProductAuthField* pProductAuth,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameters:
pProductAuth: pointer to the terminal product authentication information structure. The
structure:

struct CShfeFtdcProductAuthField

{
//[Trading terminal name
TShfeFtdcProductinfoType ApplD;
///Terminal authentication authorization ID
TShfeFtdcAuthlDType AuthliD;

I3

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
-1 Authentication failed Unable to find the authorization ID corresponding to

the trading terminal or the authorization ID does not
match

nRequestID: returns the user terminal authentication request ID; this ID is specified by
the user upon performing terminal authentication.
bIsLast: indicates whether or not this return is the last return regarding nRequestID.

109

Trading API & Market Data API Interface Specifications v2.00

2.2. CShfeFtdcTraderApi Interfaces

The CShfeFtdcTraderApi interface provides users with functions including order and
quote entry, order and quote cancellation, order suspension and activation, order and quote
request, trade query, member-client query, member position query, client position query,
contract query, contract trading status query, and exchange announcement query.

The Trading System imposes limits on the instruction speed (number of instructions sent
per second and number of in-transit instructions) for each seat; and exceeding the limit will
result in instruction sending failures. Please consult the relevant department of the Exchange
for specific quota number.

2.2.1. CreateFtdcTrader Api Method

This is to create an instance of the CShfeFtdcTraderApi; while this cannot be created
with a “new”.
Function Prototype:

static CShfeFtdcTraderApi* CreateFtdcTraderApi(const char* pszFlowPath =
IIII);

Parameters:

pszFlowPath: Constant character pointer, used to point to a file catalog/directory that
stores the status of the bulletin/news sent by the Trading System. The default value is the
current catalog/location/directory.
Return Value:

This returns a pointer that point to an instance of the CShfeFtdcTraderApi.

2.2.2. GetVersion Method

This is to get the API version.
Function Prototype:

const char* GetVersion(int& nMajorVersion, int& nMinorVersion);

Parameters:
nMajorVersion: returns the main/primary version number
nMinorVersion: returns the minor version number
Return Value:
This returns a constant pointer that points to the versioning identification string.

2.2.3. Release Method
Release the internal resources of the current API instance, exit the API working thread,

and set the API exit signal (only sets the exit signal, does not release the instance).
Function Prototype:

110

Trading API & Market Data API Interface Specifications v2.00

int Release();

Return Value:
0, success
-9 indicates uninitialized.

2.2.4. Init Method

This is to establish the connection between the Member System and the Trading System.
After the connection is established, user can proceed to login.
Function Prototype:

int Init();

Return Value:
0, success
-5 indicates already logged in or repeated invocation.

2.2.5. Join Method

Blocks the API working thread. After the API exit signal is triggered, the current API
instance will be released.
Function Prototype:

int Join();

Return Value:
0, success

2.2.6. GetTradingDay Method
This is to get the current trading day. A correct value will only be retrieved after a

successful login to the Trading System.
Function Prototype:

const char* GetTradingDay();

Return Value:
This returns a constant pointer that points to the date information character string.

2.2.7. RegisterSpi Method

This is to register to an instance derived from CShfeFtdcTraderSpi instance class. This
instance would be used to complete events handling.
Function Prototype:

void RegisterSpi(CShfeFtdcTraderSpi* pSpi);

111

Trading API & Market Data API Interface Specifications v2.00

Parameters:
pSpi: realizes/implements the pointer for ShfeFtdcTraderSpi interface instance.

2.2.8. RegisterFront Method

Set the network communication address of the trading front server. The Trading System
has multiple trading front servers, and users can register multiple trading front server network
communication addresses simultaneously.

Function Prototype:

int RegisterFront(const char* pszFrontAddress);

Parameters:
pszFrontAddress: pointer to the trading front server’s network communication address.
The server address is in the format “protocol://ipaddress:port”, e.g. “tcp://127.0.0.1:17001”.
“tcp” in the instance is the transmission protocol, “127.0.0.1” represents the server address,
and “17001” represent s the server port number.
Return Value:
0, success
-8, indicates the number of registered front addresses exceeds the maximum value;
-10, indicates already initialized.

2.2.9. RegisterNameServer Method

Set the network communication address of the Trading System’s FENS service. The
Trading System has multiple FENS services, and users can register multiple FENS service
network communication addresses simultaneously.

Function Prototype:

int RegisterNameServer(const char* pszNsAddress);

Parameters:
pszNsAddress: pointer to the Trading System FENS service network communication
address. The network communication address is in the format “protocol://ipaddress:port”,
e.g. “tcp://127.0.0.1:17001”. “tcp” in the instance is the transmission protocol, “127.0.0.1”
represents the server address, and “17001” represents the server port number.
Return Value:
0, success
-8, indicates the number of registered FENS service addresses exceeds the
maximum value;
-10, indicates already initialized.

2.2.10. SetHeartbeatTimeout Method

This is to set heartbeat timeout limit for network communication. After the connection
between TraderAPI and the TCP of the Trading System is established, it will send regular
heartbeat to detect whether the connection is functioning well. This method is used to set the

112

Trading API & Market Data API Interface Specifications v2.00

time for detecting heartbeat timeout. The Exchange recommends that member systems set
the timeout value between 10 and 30 seconds.
Function Prototype:

int SetHeartbeatTimeout(unsigned int timeout);

Parameters:

timeout: heartbeat timeout time limit (in seconds). If no information is received from the
Trading System for more than timeout/2 seconds, the OnHeartBeatWarning callback will be
triggered. If no information is received from the Trading System for more than timeout
seconds, the connection will be disconnected, triggering the OnFrontDisconnected callback.

Please refer to Part I Section 4.9 for the heartbeat mechanism
Return Value:

0, success
-10, indicates already initialized.

2.2.11. OpenRequestL.og Method

This is to open the request log file. After this method is called, all request information
sent to the Trading System will be recorded in the specified log files.
Function Prototype:

int OpenRequestLog(const char* pszReqlLogFileName);

Parameters:
pszReqLogFileName: the request log file name.
Return Value:
0, success
-4, indicates failure to open log file.

2.2.12. OpenResponseL.og Method

This is to open the reply log file. After the method is called, all information returned
from the Trading System will be recorded in the specified log file, including reply message
and return message.

Function Prototype:

int OpenResponselLog(const char* pszRspLogFileName);

Parameters:
pszRspLogFileName: reply log file name.
Return Value:
0, success
-4, indicates failure to open log file.

2.2.13. SubscribePrivateTopic Method

113

Trading API & Market Data API Interface Specifications v2.00

This is to subscribe to member-specific private stream. After a successful subscription,
the Trading System will proactively send the member private stream or trader private stream
to the Member System based on subscription permissions.

Function Prototype:

int SubscribePrivateTopic(TERESUMETYPE nResumeType);

Parameters:
nResumeType: Member private stream retransmission mode:

TERT RESTART: to re-transmit from current trading day
TERT RESUME: resume from where it last left off. To ensure the integrity of
member trading data, the Exchange recommends using this mode to receive
the member private stream, and to process subsequent order business only
after restoring the member’s trading data for the day.
TERT QUICK: to only transmit those post-current-login member-specific private
stream contents. To ensure the integrity of member trading data, the Exchange
does not recommend using this method to receive the private stream.

Return Value:
0, success
-10, indicates already initialized.

2.2.14. SubscribePublicTopic Method

This is to subscribe to public stream. After a successful subscription, the Trading System
will proactively send the public stream to the Member System.
Function Prototype:

int SubscribePublicTopic(TE_RESUME_TYPE nResumeType);

Parameters:
nResumeType: public stream re-transmission method types:
TERT RESTART: to re-transmit from current trading day
TERT RESUME: to re-transmit by resuming and continuing from last transmission
TERT _QUICK: to only transmit those post-current-login member-specific private
stream contents
Return Value:
m 0, success
m -10, indicates already initialized.

2.2.15. SubscribeUserTopic Method

This is to subscribe to trader-specific private stream. After a successful subscription, the
Trading System will proactively send the trader private stream to the Member System.
Function Prototype:

int SubscribeUserTopic(TE_RESUME_TYPE nResumeType);

114

Trading API & Market Data API Interface Specifications v2.00

Parameters:

nResumeType: Trader private stream retransmission mode,
TERT RESTART: to re-transmit from current trading day
TERT RESUME: resume from where it last left off. To ensure the integrity of
member trading data, the Exchange recommends using this mode to receive
the trader private stream, and to process subsequent order business only after

restoring both the member’s and the trader’s trading data for the day.

TERT_QUICK: only sends trader private stream content after login. The Exchange

does not recommend using this mode to receive trader private streams to

ensure the integrity of members’ trading data.

Return Value:

0, success

-10, indicates already initialized.

2.2.16. ReqUserLogin Method

User login request.

Function Prototype:

int ReqUserLogin(
CShfeFtdcReqUserLoginField* pReqUserLoginField,
int nRequestiD);

Parameters:

pReqUserLoginField: pointer to the login request structure. The structure:

struct CShfeFtdcReqUserLoginField {
/l/Business day
TShfeFtdcDateType TradingDay;
/l[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Password
TShfeFtdcPasswordType Password;
/l/The user-end product information
TShfeFtdcProductinfoType UserProductinfo;
/l[The interface-port product information
TShfeFtdcProductinfoType InterfaceProductinfo;
///Protocol information
TShfeFtdcProtocollnfoType Protocolinfo;
///Datacenter ID
TShfeFtdcDataCenterlDType DataCenterlD;

+

User is required to fill the field of "UserProductinfo", i.e., product
information of Member System such as software developer and version number

For instance,

“SFIT Trader V100” represents the trading program and version

number developed by technology firm.

nRequestID: returns the user login request ID; this ID is specified and managed by the

user.
Return Value:

115

Trading API & Market Data API Interface Specifications v2.00

0, success

-2, indicates exceeding in-transit transaction flow control;

-3, indicates exceeding transaction request flow control;

-5, indicates already logged in or repeated invocation;

-6, indicates a required field is empty' (UserProductInfo not filled in);
-7, indicates authentication is enabled but authentication failed;

-9, indicates uninitialized;

-12, indicates connection to the front server has not yet been established.

2.2.17. ReqUserLogout Method

User logout request.
Function Prototype:

int ReqUserLogout(
CShfeFtdcReqUserLogoutField* pReqUserLogout,
int nRequestiD);

Parameter:
pReqUserLogout: pointer to the logout request structure. The structure:

struct CShfeFtdcReqUserLogoutField {
/l[Trading User ID
TShfeFtdcUserIDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
b

nRequestID: returns the user logout request ID; this ID is specified and managed by the
user.
Returned Value:
0, success
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding the transaction request flow control.

2.2.18. ReqUserPasswordUpdate Method

This is the user password update request.
Function Prototype:

int ReqUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
int nRequestiD);

Parameter:
pUserPasswordUpdate: pointer to the user password modification structure. The
structure:

! Note: Empty string definition: Strings containing only spaces or no characters; the same applies below.

116

Trading API & Market Data API Interface Specifications v2.00

struct CShfeFtdcUserPasswordUpdateField {
//[Trading User ID
TShfeFtdcUserlDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///0ld Password
TShfeFtdcPasswordType OldPassword;
///New Password
TShfeFtdcPasswordType NewPassword;
b

nRequestID: returns the user password modification request ID; this ID is specified and
managed by the user.
Returned Value:
0, success
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding the transaction request flow control;
-13, indicates a member ID mismatch;
-14, indicates a user ID mismatch.

2.2.19. ReqSubscribeTopic Method

Topic subscription request. It will be called after successful login.
Function Prototype:

int ReqSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestiD);

Parameter:
pDissemination: pointer to the subscribed topic structure, including topic to be
subscribed as well as the starting message sequence number. The structure:

struct CShfeFtdcDisseminationField {
///Sequence series number
TShfeFtdcSequenceSeriesType SequenceSeries;
/l/Sequence number
TShfeFtdcSequenceNoType SequenceNo;
I3
SequenceSeries: topics to be subscribed
SequenceNo: A value less than 0 indicates using TERT_QUICK mode; other values
specify the sequence number to resume from

nRequestID: returns the user topic subscription request ID; this ID is specified and
managed by the user.
Returned Value:
0, success
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding the transaction request flow control.

117

Trading API & Market Data API Interface Specifications v2.00

2.2.20. ReqQryTopic Method

This is the request for querying topic/theme. It will be called after successful login.
Function Prototype:

int ReqQryTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestiD);

Parameter:
pDissemination: pointer to the topic query structure, including topic to be queried. The
structure:

struct CShfeFtdcDisseminationField {
/l/Serial series number: Fill in the topic number to query
TShfeFtdcSequenceSeriesType SequenceSeries;
/l/Sequence number, unused field
TShfeFtdcSequenceNoType SequenceNo;

b

nRequestID: returns the user topic query request ID; this ID is specified and managed
by the user.
Returned Value:
0, success
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.21. ReqOrderInsert Method

Order entry request.
Function Prototype:

int ReqOrderinsert(
CShfeFtdcinputOrderField* plnputOrder,
int nRequestiD);

Parameter:
pInputOrder: pointer to the order entry structure. The structure:

struct CShfeFtdcinputOrderField {
///Order number; this field will be returned by Trading System.
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
/l/Contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Conditions of order price
TShfeFtdcOrderPriceTypeType OrderPriceType;

118

Trading API & Market Data API Interface Specifications v2.00

///Buy-sell direction

TShfeFtdcDirectionType Direction;

///Combination offset flag

TShfeFtdcCombOffsetFlagType CombOffsetFlag;

///Combination hedge flag

TShfeFtdcCombHedgeFlagType CombHedgeFlag;

///Price

TShfeFtdcPriceType LimitPrice;

/l/Quantity

TShfeFtdcVolumeType VolumeTotalOriginal;

/l[Type of valid period

TShfeFtdcTimeConditionType TimeCondition;

///GTD DATE, not used

TShfeFtdcDateType GTDDate;

/INVolume type;

TShfeFtdcVolumeConditionType VolumeCondition;

///The Min.volume, used when the VolumeCondition is set as “minimum quality”

TShfeFtdcVolumeType MinVolume;

/l[Trigger conditions

TShfeFtdcContingentConditionType ContingentCondition;

/l/Stop-loss price, not used

TShfeFtdcPriceType StopPrice;

///Reasons for forced closing-out

TShfeFtdcForceCloseReasonType ForceCloseReason;

///Local order number*

TShfeFtdcOrderLocallDType OrderLocallD;

/l/Flag of auto-suspension

TShfeFtdcBoolType IsAutoSuspend;

///Business unit, not used

TShfeFtdcBusinessUnitType BusinessUnit;

///Local business ID

TShfeFtdcBusinessLocallDType BusinessLocallD;

///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

b
* OrderLocallD: Local order identifier, must increment sequentially (compared as

strings). After each successful login, the maximum local order ID used for the seat on the
current day can be obtained from the MaxOrderLocallD field of the
CShfeFtdcRspUserLoginField output parameter in OnRspUserLogin.

nRequestID: returns the user order entry request ID; this ID is specified and managed

by the user. This ID can be reused within the same session.
Returned Value:

0, success

-1, indicates not logged in;

-2, indicates exceeding in-transit transaction flow control;

-3, indicates exceeding transaction request flow control;

-6, indicates required field is empty (OrderLocallD is empty);

119

Trading API & Market Data API Interface Specifications v2.00

-11, indicates duplicate ID (OrderLocallD not incrementing as required?).

Business Description:
The current Trading System supports the following order types:

Price Condition Time Condition Volume Condition Trigger Condition
OrderPriceType TimeCondition VolumeCondition ContingentCondition
Limit Price Day Order Any Volume (AV) Immediate
Market Price
Limit Price Complete Any Volume (AV) Immediate

i diatel

mmeciaey, Minimum Volume (MV)

otherwise cancel
Market Price Fill-Or-Kill (CV)

2.2.22. ReqOrderAction Method

Order action requests, including order cancellation, suspension,
modification.
Function Prototype:

activation,

and

int ReqOrderAction(
CShfeFtdcOrderActionField* pOrderAction,
int nRequestiD);

Parameter:
pOrderAction: pointer to the order operation structure. The structure:

struct CShfeFtdcOrderActionField {
///Order number*
TShfeFtdcOrderSysIDType OrderSysID;
///Local order number*
TShfeFtdcOrderLocallDType OrderLocallD;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Price, not used
TShfeFtdcPriceType LimitPrice;
/l/Local number of operation*
TShfeFtdcOrderLocallDType ActionLocallD;
///Change in quantity, not used
TShfeFtdcVolumeType VolumeChange;
///Business unit, not used
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/I/IP address

2 Explanation of Incrementing: Requests involving local IDs share a common LocallD sequence. For non-empty

local ID strings, the LocallD sequence must increment; the same applies below.

120

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
b
* OrderSysID and OrderLocallD means that either of the target order to operated can
be filled.
* ActionLocallD: Local operation ID; if non-empty, must increment sequentially.

nRequestID: returns the user order action request ID; this ID is specified and managed
by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both OrderSysID and OrderLocallD are
empty);
-11, indicates duplicate ID (ActionLocallD not incrementing as required).
Business Description:
Order modification functionality is not currently supported.

2.2.23. ReqQuotelnsert Method

Quote entry request.
Function Prototype:

int ReqQuotelnsert(
CShfeFtdcinputQuoteField* plnputQuote,
int nRequestiD);

Parameter:
pInputQuote: pointer to the quote entry structure. The structure:

struct CShfeFtdcinputQuoteField {
///Quote number,this field will be returned by Trading System.
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
/l/Quantity
TShfeFtdcVolumeType Volume;
/l/Contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Local quoto number
TShfeFtdcOrderLocallDType QuotelocallD;
///Business unit, not used
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Buyer’s combination offset flag

121

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
///Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price
TShfeFtdcPriceType BidPrice;
/l/Seller's combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
/l/Seller's combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
///Seller’s price
TShfeFtdcPriceType AskPrice;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/I/IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

b

nRequestID: returns the user quote request ID; this ID is designated and managed by the
user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (QuoteLocallD is empty);
-11, indicates duplicate ID (QuoteLocallD not incrementing as required).

2.2.24. ReqQuoteAction Method

Quote action requests, including quote cancellation, suspension, activation, and
modification.
Function Prototype:

int ReqQuoteAction(
CShfeFtdcQuoteActionField* pQuoteAction,
int nRequestiD);

Parameter:
pQuoteAction: pointer to the quote operation structure. The structure:

struct CShfeFtdcQuoteActionField {
///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Local quoto number
TShfeFtdcOrderLocallDType QuotelocallD;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;

122

Trading API & Market Data API Interface Specifications v2.00

///Member ID

TShfeFtdcParticipantIDType ParticipantiD;

/l/Client ID

TShfeFtdcClientIDType ClientID;

//[Transaction user’s ID

TShfeFtdcUserlDType UserlD;

///Local number of operation

TShfeFtdcOrderLocallDType ActionLocallD;

///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;

/l/Local business ID

TShfeFtdcBusinessLocallDType BusinessLocallD;

///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;
b

nRequestID: returns the user quote request ID; this ID is designated and managed by the
user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both QuoteSysID and QuoteLocallD are
empty);
-11, indicates duplicate ID (ActionLocallD not incrementing as required).
Business Description:
Currently, only quote cancellation is supported.

2.2.25. ReqExecOrderInsert Method
Execution declaration entry request. Only option buyers are allowed to submit option

exercise requests.
Function Prototype:

int ReqExecOrderinsert(
CShfeFtdcinputExecOrderField* plnputExecOrder,
int nRequestiD);

Parameter:
pInputExecOrder: pointer to the input option exercise structure. The structure:

struct CShfeFtdcinputExecOrderField {
/l/Contract number
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID
TShfeFtdcClientIDType ClientID;

123

Trading API & Market Data API Interface Specifications v2.00

/l[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
/l/Local option exercise number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
///Quantity
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
/l/position direction, i.e. whether buyer(long position) or seller(short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
/l/Flag indicating whether to retain futures positions after option exercise, not
used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
b

nRequestID: returns the user option exercise entry request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (ExecOrderLocallD is empty);
-11, indicates duplicate ID (ExecOrderLocallD not incrementing as required).

2.2.26. ReqExecOrderAction Method

Option exercise request.
Function Prototype:

int ReqExecOrderAction(
CShfeFtdcExecOrderActionField* pExecOrderAction,
int nRequestiD);

Parameter:
pExecOrderAction: pointer to the option exercise operation structure. The structure:

struct CShfeFtdcExecOrderActionField {
///Option exercise number

124

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcExecOrderSysIDType ExecOrderSysiD;
///Local option exercise number
TShfeFtdcOrderLocallDType ExecOrderLocallD;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID

TShfeFtdcUserlDType UserlD;

///Local number of operation
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
/l/Local business ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

+

nRequestID: returns the user option exercise action request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both ExecOrderSysID and
ExecOrderLocallD are empty);
-11, indicates duplicate ID (ActionLocallD not incrementing as required).
Business Description:
Currently, only option exercise cancellation is supported.

2.2.27. ReqQryPartAccount Method

Member funds query request.
Function Prototype:

int ReqQryPartAccount(
CShfeFtdcQryPartAccountField* pQryPartAccount,
int nRequestiD);

Parameter:
pQryPartAccount: pointer to the member fund query structure. The structure:

struct CShfeFtdcQryPartAccountField {
///[The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartlDStart;

125

Trading API & Market Data API Interface Specifications v2.00

///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
/l/[Fund account, optional
TShfeFtdcAccountiIDType AccountID;
b

nRequestID: returns the user member funds query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.28. ReqQryOrder Method

This is for order query request.
Function Prototype:

int ReqQryOrder(
CShfeFtdcQryOrderField* pQryOrder,
int nRequestiD);

Parameter:
pQryOrder: pointer to the order query structure. The query conditions are related. If an
optional query condition is empty, that query condition will be ignored. The structure:

struct CShfeFtdcQryOrderField {
///The starting member ID can only represent this member
TShfeFtdcParticipantiDType PartiDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Order number, optional
TShfeFtdcOrderSysIDType OrderSysID;
///Contract ID, optional
TShfeFtdcinstrumentIDType InstrumentID;
/l/Client ID, optional
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID, optional
TShfeFtdcUserIDType UserlD;
/l[The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional
TShfeFtdcTimeType TimeEnd;
b

nRequestID: returns the user order query request ID; this ID is specified and managed
by the user.
Returned Value:
0, successful
-1, indicates not logged in;

126

Trading API & Market Data API Interface Specifications v2.00

-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.29. ReqQryQuote Method

Quote request request.
Function Prototype:

int ReqQryQuote(
CShfeFtdcQryQuoteField* pQryQuote,
int nRequestiD);

Parameter:
pQryQuote: pointer to the quote request structure. The structure:

struct CShfeFtdcQryQuoteField {
///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
//[The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Quote No, optional
TShfeFtdcQuoteSysIDType QuoteSysID;
/l/Client ID, optional
TShfeFtdcClientIDType ClientID;
///Contract ID, optional
TShfeFtdcinstrumentIDType InstrumentiD;
//[Transaction user’s ID, optional
TShfeFtdcUserlDType UserlD;
b

nRequestID: returns the user quote request ID; this ID is designated and managed by the
user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.30. ReqQryTrade Method

This is the request for trade query (matched/filled order query).
Function Prototype:

int ReqQryTrade(
CShfeFtdcQryTradeField* pQryTrade,
int nRequestiD);

Parameter:
pQryTrade: pointer to the trade query (i.e. filled/matched order) structure. The structure:

struct CShfeFtdcQryTradeField {

127

Trading API & Market Data API Interface Specifications v2.00

/l/The starting member ID can only represent this member
TShfeFtdcParticipantiDType PartiDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///The starting contract ID, optional
TShfeFtdcinstrumentIDType InstIDStart;
///The ending contract ID, optional
TShfeFtdcinstrumentIDType InstIDENd;
/l[Transaction number, optional
TShfeFtdcTradelDType TradelD;
/l/Client ID, optional
TShfeFtdcClientIDType ClientID;
/l[Transaction user’s ID, optional
TShfeFtdcUserlDType UserlD;
//[The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional
TShfeFtdcTimeType TimeEnd;
b

NRequestID: returns the user trade query request ID; this ID is specified and managed
by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.31. ReqQryClient Method

This is for member client query request.
Function Prototype:

int ReqQryClient(
CShfeFtdcQryClientField* pQryClient,
int nRequestiD);

Parameter:
pQryClient: pointer to the client query structure. The structure:

struct CShfeFtdcQryClientField {
///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
//[The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
/l[The starting client ID, optional
TShfeFtdcClientIDType ClientIDStart;
/l[The ending client ID, optional
TShfeFtdcClientIDType ClientIDEnd;
b

nRequestID: returns the user client query request ID; this ID is specified and managed

128

Trading API & Market Data API Interface Specifications v2.00

by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.32. ReqQryPartPosition Method

Member position query request.
Function Prototype:

int ReqQryPartPosition(
CShfeFtdcQryPartPositionField* pQryPartPosition,
int nRequestID);

Parameter:
pQryPartPosition: pointer to the member position query structure. The structure:

struct CShfeFtdcQryPartPositionField {
///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartlDStart;
//[The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
/l[The starting contract ID, optional
TShfeFtdcinstrumentIDType InstIDStart;
/l/The ending contract ID, optional
TShfeFtdcinstrumentIDType InstIDENd;

b

nRequestID: returns the user member position query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.33. ReqQryClientPosition Method

Client position query request.
Function Prototype:

int ReqQryClientPosition(
CShfeFtdcQryClientPositionField* pQryClientPosition,
int nRequestiD);

Parameter:
pQryClientPosition: pointer to the client position query structure. The structure:

struct CShfeFtdcQryClientPositionField {

129

Trading API & Market Data API Interface Specifications v2.00

/l/The starting member ID can only represent this member
TShfeFtdcParticipantiDType PartiDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
//[The starting client ID, optional
TShfeFtdcClientIDType ClientIDStart;
//[The ending client ID, optional
TShfeFtdcClientIDType ClientIDEnd;
/l[The starting contract ID, optional
TShfeFtdcinstrumentIDType InstIDStart;
/l/The ending contract ID, optional
TShfeFtdcinstrumentIDType InstIDEnd;
/l[Type of client, optional
TShfeFtdcClientTypeType ClientType;
b

nRequestID: returns the user client position query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.34. ReqQrylInstrument Method

Instrument/contract query request.
Function Prototype:

int ReqQrylnstrument(
CShfeFtdcQrylnstrumentField* pQryinstrument,
int nRequestiD);

Parameter:
pQrylInstrument: pointer to the contract query structure. The structure:

struct CShfeFtdcQrylnstrumentField {
/l/Settlement group’s ID, optional
TShfeFtdcSettlementGrouplDType SettlementGrouplD;
///Product suite’s ID, optional
TShfeFtdcProductGroupIlDType ProductGrouplD;
///Product ID, optional
TShfeFtdcProductiDType ProductID;
///Contract ID, optional
TShfeFtdcinstrumentIDType InstrumentiD;

+

nRequestID: returns the user contract query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful

130

Trading API & Market Data API Interface Specifications v2.00

-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.35. ReqQrylInstrumentStatus Method

Contract trading status query request.
Function Prototype:

int ReqQrylnstrumentStatus(
CShfeFtdcQrylnstrumentStatusField* pQrylnstrumentStatus,
int nRequestID);

Parameter:
pQrylnstrumentStatus: pointer to the contract trading status query structure. The
structure:

struct CShfeFtdcQrylnstrumentStatusField {
///The starting contract ID, optional
TShfeFtdcinstrumentIDType InstIDStart;
///The ending contract ID, optional
TShfeFtdcinstrumentIDType InstIDENd;
b

nRequestID: returns the user contract status query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.36. ReqQryMarketData Method

General market data query request.
Function Prototype:

int ReqQryMarketData(
CShfeFtdcQryMarketDataField* pQryMarketData,
int nRequestID);

Parameter:
pQryMarketData: pointer to the market data query structure. The structure:

struct CShfeFtdcQryMarketDataField {
///Product ID, optional
TShfeFtdcProductiDType ProductID;
///Contract ID, optional
TShfeFtdcinstrumentIDType InstrumentID

+

131

Trading API & Market Data API Interface Specifications v2.00

nRequestID: returns the user general market data query request ID; this ID is specified

and managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.37. ReqQryBulletin Method

Exchange bulletin query request.
Function Prototype:

int ReqQryBulletin(
CShfeFtdcQryBulletinField* pQryBulletin,
int nRequestiD);

Parameter:
pQryBulletin: pointer to the Exchange announcement query structure. The structure:

struct CShfeFtdcQryBulletinField {
/l[Trading Day, Optional
TShfeFtdcDateType TradingDay;
///market ID, optional
TShfeFtdcMarketIDType MarketlD;
///bulletin ID, optional
TShfeFtdcBulletinIDType BulletinID;
///bulletin type, optional
TShfeFtdcNewsTypeType NewsType;
/llurgency level, optional
TShfeFtdcNewsUrgencyType NewsUrgency;

b

nRequestID: returns the user announcement query request ID; this ID is specified and

managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.38. ReqQryHedgeVolume Method

Hedge quota query request.
Function Prototype:

int ReqQryHedgeVolume(
CShfeFtdcQryHedgeVolumeField* pQryHedgeVolume,
int nRequestiD);

132

Trading API & Market Data API Interface Specifications v2.00

Parameter:
pQryHedgeVolume: pointer to the hedge quota query structure. The structure:

struct CshfeFtdcQryHedgeVolumeField {

{
/l/The starting member ID can only represent this member
TShfeFtdcParticipantiDType PartiDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
//[The starting client ID, optional
TShfeFtdcClientIDType ClientIDStart;
//[The ending client ID, optional
TShfeFtdcClientIDType ClientIDEnd;
/l[The starting contract ID, optional
TShfeFtdcinstrumentIDType InstIDStart;
/l/The ending contract ID, optional
TShfeFtdcinstrumentIDType InstIDENd;

b

nRequestID: returns the user hedge quota query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.
Business Description:
This feature is currently unsupported.

2.2.39. ReqQryExecOrder Method

Execution declaration query request.
Function Prototype:

int ReqQryExecOrder(
CShfeFtdcQryExecOrderField* pQryExecOrder,
int nRequestID);

Parameter:
pQryExecOrder: pointer to the option exercise query structure. The structure:

struct CShfeFtdcQryExecOrderField

{
/l/The starting member ID can only represent this member
TShfeFtdcParticipantiDType PartiDStart;
//[The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Option exercise number, optional
TShfeFtdcExecOrderSysIDType ExecOrderSysiD;
///Contract ID, optional
TShfeFtdcinstrumentIDType InstrumentiD;
/l/client ID, optional

133

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcClientIDType ClientID;
///transaction user’s ID, optional
TShfeFtdcUserlDType UserlD;
//[The starting time, optional
TShfeFtdcTimeType TimeStart;
/l[The finishing time, optional
TShfeFtdcTimeType TimeEnd;
b

nRequestID: returns the user option exercise query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.40. ReqQryExchangeRate Method

This function is used to perform the exchange rate query.
Function Prototype:

int ReqQryExchangeRate(
CShfeFtdcQryExchangeRateField* pQryExchangeRate,
int nRequestiD);

Parameter:
pQryExchangeRate: pointer to the exchange rate query structure. The structure:

struct CShfeFtdcQryExchangeRateField
{
///Currency ID
TShfeFtdcCurrencylDType CurrencylD;
b

nRequestID: returns the user exchange rate query request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.41. ReqAbandonExecOrderInsert Method
Option abandonment entry request. Only option buyers have the right to abandon

exercise.
Function Prototype:

int ReqAbandonExecOrderinsert(

134

Trading API & Market Data API Interface Specifications v2.00

CShfeFtdcinputAbandonExecOrderField* plnputAbandonExecOrder,
int nRequestiD);

Parameter:
pInputAbandonExecOrder: pointer to the option abandonment entry structure. The
structure:

struct CShfeFtdcinputAbandonExecOrderField {
/l/Contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///Client ID
TShfeFtdcClientIDType ClientID;
//[Transaction user’s ID
TShfeFtdcUserIDType UserlD;
///Option abandonment local ID
TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
/l/Quantity
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
/l/Position direction that apply for abandon, only long position could apply for
abandon actually
TShfeFtdcPosiDirectionType PosiDirection;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
/l/Business local ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
/I/IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

b

nRequestID: returns the user option abandonment entry request ID; this ID is specified
and managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (AbandonExecOrderLocallD is empty);
-11, indicates duplicate ID (AbandonExecOrderLocallD not incrementing as
required).

2.2.42. ReqAbandonExecOrderAction Method

Option abandonment request.

135

Trading API & Market Data API Interface Specifications v2.00

Function Prototype:

int ReqAbandonExecOrderAction(

CShfeFtdcAbandonExecOrderActionField* pAbandonExecOrderAction,
int nRequestiD);

Parameter:

pAbandonExecOrderAction: pointer to the option abandonment structure. The

structure:

struct CShfeFtdcAbandonExecOrderActionField {

+

///Option abandonment ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///Option abandonment local ID
TShfeFtdcOrderLocallDType AbandonExecOrderLocallD;
/l/Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID

TShfeFtdcParticipantIDType ParticipantiD;
/l/Client ID

TShfeFtdcClientIDType ClientID;

//[Transaction user’s ID

TShfeFtdcUserlDType UserlD;

/l/Local number of operation
TShfeFtdcOrderLocallDType ActionLocallD;
///Business unit

TShfeFtdcBusinessUnitType BusinessUnit;
///Business local ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

nRequestID: returns the user option abandonment action request ID; this ID is specified

and managed by the user.

Returned Value:

0, successful

-1, indicates not logged in;

-2, indicates exceeding in-transit transaction flow control;

-3, indicates exceeding transaction request flow control;

-6, indicates required fields are empty (both AbandonExecOrderLocallD and
AbandonExecOrderSysID are empty);

-11, indicates duplicate ID (ActionLocallD not incrementing as required).

Business Description:
Currently, only abandon cancellation is supported.

2.2.43. ReqQryAbandonExecOrder Method

Request of option abandonment query.

136

Trading API & Market Data API Interface Specifications v2.00

Function Prototype:

int ReqQryAbandonExecOrder(
CShfeFtdcQryAbandonExecOrderField* pQryAbandonExecOrder,
int nRequestiD);

Parameter:
pQryAbandonExecOrder: pointer to the option abandonment query structure. The
structure:

struct CShfeFtdcQryAbandonExecOrderField
{
/l/The starting member ID can only represent this member
TShfeFtdcParticipantiDType PartiDStart;
//[The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Option abandonment ID, optional
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
/l/Contract ID, optional
TShfeFtdcinstrumentIDType InstrumentiD;
/l/client ID, optional
TShfeFtdcClientIDType ClientID;
//ftransaction user’s ID, optional
TShfeFtdcUserlDType UserlD;
//[The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional
TShfeFtdcTimeType TimeEnd;
b

nRequestID: returns the user option abandonment query request ID; this ID is specified
and managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.44. ReqQuoteDemand Method

Request of quote request entry.
Function Prototype:

int ReqQuoteDemand(
CShfeFtdcinputQuoteDemandField* plnputQuoteDemand,
int nRequestID);

Parameter:
pInputQuoteDemand: pointer to the quote demand entry request structure. The
structure:

struct CShfeFtdcinputQuoteDemandField

137

Trading API & Market Data API Interface Specifications v2.00

///member ID

TShfeFtdcParticipantIDType ParticipantiD;

/l/client ID

TShfeFtdcClientIDType ClientID;

/lftransaction user’s ID

TShfeFtdcUserIDType UserlD;

/l/contract ID

TShfeFtdcinstrumentIDType InstrumentID;

///quote demand local input ID

TShfeFtdcOrderLocallDType QuoteDemandLocallD;
b

nRequestID: returns the user quote demand entry request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (QuoteDemandLocallD is empty).

2.2.45. ReqOptionSelfCloseUpdate Method

Option self-hedge update request. Ordinary clients can apply for self-hedge option
positions; option sellers can apply for self-hedge futures positions arising from exercise; and
option market makers can apply to retain option positions. For option self-hedge updates, only
the latest request is kept for identical member, client, contract, and self-hedge type
combinations.

Function Prototype:

int ReqOptionSelfCloseUpdate(
CShfeFtdcinputOptionSelfCloseField* plnputOptionSelfClose,
int nRequestiD);

Parameter:
pInputOptionSelfClose: pointer to the option self-hedge update structure. The structure:

struct CShfeFtdclnputOptionSelfCloseField {
///contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/client ID
TShfeFtdcClientIDType ClientID;
/lftransaction user’s ID
TShfeFtdcUserlDType UserlD;
///Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloseLocallD;
///Quantity
TShfeFtdcVolumeType Volume;

138

Trading API & Market Data API Interface Specifications v2.00

/I/Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;

/l/business unit

TShfeFtdcBusinessUnitType BusinessUnit;

/l/business local ID

TShfeFtdcBusinessLocallDType BusinessLocallD;

///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

+

nRequestID: returns the user option self-hedge update request ID; this ID is specified
and managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (OptionSelfCloseLocallD is empty);
-11, indicates duplicate ID (OptionSelfCloseLocallD not incrementing as required).

2.2.46. ReqOptionSelfCloseAction Method

Option self-hedge action request.
Function Prototype:

int ReqOptionSelfCloseAction(
CShfeFtdcOptionSelfCloseActionField* pOptionSelfCloseAction,
int nRequestiD);

Parameter:
pOptionSelfCloseAction: pointer to the option self-hedge operation structure. The
structure:

struct CShfeFtdcOptionSelfCloseActionField {
///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
/l/Local option self-hedge ID
TShfeFtdcOrderLocallDType OptionSelfCloselocallD;
///Option self-hedge operation flag
TShfeFtdcActionFlagType ActionFlag;
///member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/client ID
TShfeFtdcClientIDType ClientID;
/lftransaction user’s ID
TShfeFtdcUserIDType UserlD;
/l/Local number of operation
TShfeFtdcOrderLocallDType ActionLocallD;
/l/business unit

139

Trading API & Market Data API Interface Specifications v2.00

+

TShfeFtdcBusinessUnitType BusinessUnit;
/l/business local ID
TShfeFtdcBusinessLocallDType BusinessLocallD;
///IP address

TShfeFtdcIPAddressType IPAddress;

///Mac address

TShfeFtdcMacAddressType MacAddress;

nRequestID: returns the user option self-hedge action request ID; this ID is specified

and managed by the user.

Returned Value:

0, successful

-1, indicates not logged in;

-2, indicates exceeding in-transit transaction flow control;

-3, indicates exceeding transaction request flow control;

-6, indicates required fields are empty (both OptionSelfCloseLocallD and
OptionSelfCloseSysID are empty);

-11, indicates duplicate ID (ActionLocallD not incrementing as required).

Business Description:

Currently, only option self-hedge cancellations are supported.

2.2.47. ReqQryOptionSelfClose Method

Option self-hedge query request.

Function Prototype:

int ReqQryOptionSelfClose(

CShfeFtdcQryOptionSelfCloseField* pQryOptionSelfClose,
int nRequestID);

Parameter:

pQryOptionSelfClose: pointer to the option self-hedge query structure. The structure:

struct CShfeFtdcQryOptionSelfCloseField

{

///[The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartlDStart;

//[The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;

///Option self-hedge ID, optional
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
/l/Contract ID, optional

TShfeFtdcinstrumentIDType InstrumentiD;

/l/client ID, optional

TShfeFtdcClientIDType ClientID;

///transaction user’s ID, optional

TShfeFtdcUserlDType UserlD;

//[The starting time, optional

TShfeFtdcTimeType TimeStart;

/l[The finishing time, optional

140

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcTimeType TimeEnd;
b

nRequestID: returns the user option self-hedge query request ID; this ID is specified
and managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.48. ReqAuthenticate Method

This method is only for proprietary members and is used for authentication before
proprietary members collect trading terminal information.

Terminal authentication request.
Function Prototype:

int ReqAuthenticate(
CShfeFtdcProductAuthField* pProductAuth,
int nRequestiD);

Parameter:
pProductAuth: pointer to the terminal product authentication information structure. The
structure:

struct CShfeFtdcProductAuthField

{
/l[Trading terminal name
TShfeFtdcProductinfoType ApplD;
///Terminal authentication authorization ID
TShfeFtdcAuthlDType AuthliD;

I3

nRequestID: returns the user terminal product authentication information request ID;
this ID is specified and managed by the user.
Returned Value:
0, successful
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-5, indicates already logged in or duplicate invocation (not allowed after login or
repeated invocation);
-9, indicates uninitialized;
-12, indicates connection to the front server has not yet been established.

3. TraderAPI Interface Development Instances

// tradeapitest.cpp :

141

Trading API & Market Data API Interface Specifications v2.00

/I A simple instance that describes the use of interface for CShfeFtdcTraderApi and
CShfeFtdcTraderSpi.

// This instance shows the process of order entry operation

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "FtdcTraderApi.h"

class CSimpleHandler : public CShfeFtdcTraderSpi
{
public:
/I Constructed function that needs an effective pointer pointing to the
CShfeFtdcMduserApi instance
CSimpleHandler(CShfeFtdcTraderApi *pTraderApi) : m_pTraderApi(pTraderApi){}

~CSimpleHandler() {}

/| Member System needs to complete the login step when it has created
communication connection with Trading System
virtual void OnFrontConnected()
{
CShfeFtdcReqUserLoginField reqUserLogin;
memset(&reqUserlLogin, 0, sizeof(reqUserLogin));
strcpy(reqUserLogin.ParticipantiD, "0888");
strcpy(reqUserlLogin.UserlD, "0888clc");
strcpy(reqUserLogin.Password, "1");
strcpy(reqUserLogin.UserProductinfo, "Test TraderAPI v2.00");
/I Send the login request
int ret = m_pTraderApi ->ReqUserLogin(®UserLogin, 0);
if (ret I'=0)
{
printf("ReqUserLogin Fail ret = %d\n", ret);
exit(-1);
}
}

// This method will be called when Member System disconnect its communication with
Trading System
virtual void OnFrontDisconnected(int nReason)
{
/I In this case, API will automatically conduct reconnection while Member System
may do nothing
printf("OnFrontDisconnected Reason = %#x.\n", nReason);

}

/] After Member System sent the login request, this method will be called to notify
Member System of whether this login is successful or not
virtual void OnRspUserLogin(CShfeFtdcRspUserLoginField *pRspUserLogin,
CShfeFtdcRsplnfoField *pRsplinfo, int nRequestiD, bool blsLast)
{
printf("OnRspUserLogin:\n");
printf("ErrorID=[%d], ErrorMsg=[%sI\n", pRspInfo->ErrorID, pRsplnfo->ErrorMsg);
printf("RequestiD=[%d], Chain=[%d]\n", nRequestID, blsLast);

142

Trading API & Market Data API Interface Specifications v2.00

if (pRspinfo->ErroriD 1= 0) {
/I In case of login failure, Member System will be required to conduct the error-
processing
printf("Failed to login, erroriID=%d errormsg=%s requestid=%d chain=%d",
pRspinfo->ErrorID, pRspIinfo->ErrorMsg, nRequestlD, blsLast);
exit(-1);
}

// In case of successful login, the order entry request will be sent
CShfeFtdclnputOrderField ord;
memset(&ord, 0, sizeof(ord));

// Member ID

strcpy(ord.ParticipantiD, "0888");

// Client ID

strcpy(ord.ClientlD, "08880001");

/l Transaction user’s ID

strcpy(ord.UserlD, "0888clc");

// Contract ID

strcpy(ord.InstrumentID, "cu2511");

// Conditions of order price
ord.OrderPriceType = SHFE_FTDC_OPT_LimitPrice;
/I Buy-sell direction

ord.Direction = SHFE_FTDC_D_Buy;

/l Combination offset flag
strcpy(ord.CombOffsetFlag, "0");

// Combination hedge flag
strcpy(ord.CombHedgeFlag, "1");

// Price

ord.LimitPrice = 74000;

/I Quantity

ord.VolumeTotalOriginal = 10;

/I Type of valid period

ord.TimeCondition = SHFE_FTDC_TC_GFD;
// GTD date

strcpy(ord.GTDDate, "");

// Volume type

ord.VolumeCondition = SHFE_FTDC_VC_AV;
// The Min.volume

ord.MinVolume = 0;

/] Trigger conditions
ord.ContingentCondition = SHFE_FTDC_CC_Immediately;
// Stop-loss price

ord.StopPrice = 0;

// Reasons for forced closing-out
ord.ForceCloseReason = SHFE_FTDC_FCC_NotForceClose;
// Local order number
strcpy(ord.OrderLocallD, "0000000001");

// Flag of auto-suspension
ord.IsAutoSuspend = 0;

int ret = m_pTraderApi ->ReqgOrderinsert(&ord, 1);
if (ret'=0)

143

Trading API & Market Data API Interface Specifications v2.00

{
printf("ReqOrderinsert Fail ret = %d\n", ret);

exit(-1);
}

}

// Response to order entry
virtual void OnRspOrderinsert(CShfeFtdcinputOrderField *plnputOrder,
CShfeFtdcRsplinfoField *pRsplinfo, int nRequestID, bool blsLast)
{
// Output of order entry result
printf("ErrorlID=[%d], ErrorMsg=[%s]\n", pRspInfo->ErroriD, pRsplInfo->ErrorMsg);

// Order Entry Completed
exit(0);
b

/l/Return on order
virtual void OnRtnOrder(CShfeFtdcOrderField *pOrder)
{
printf("OnRtnOrder:\n");
printf("OrderSysID=[%s]\n", pOrder->0OrderSysID);

}

// Notification on erroneous user request
virtual void OnRspError(CShfeFtdcRsplinfoField *pRspinfo, int nRequestID, bool bisLast)

{
printf("OnRspError:\n");
printf("ErrorlID=[%d], ErrorMsg=[%s]\n", pRspInfo->ErroriD, pRsplInfo->ErrorMsg);
printf("RequestiD=[%d], Chain=[%d]\n", nRequestID, blsLast);
// Member System is required to conduct error-processing
exit(-1);
}
private:
/] Pointer pointing to the instance of CShfeFtdcMduserApi
CShfeFtdcTraderApi *m_pTraderApi;
b
int main()
{

/l Generate an instance of CShfeFtdcTraderApi

CShfeFtdcTraderApi *pTraderApi =
CShfeFtdcTraderApi::CreateFtdcTraderApi();

/l Generate an incident-handling instance

CSimpleHandler sh(pTraderApi);

// Register an incident-handling instance

pTraderApi->RegisterSpi(&sh);

/] Subscription of private stream
pTraderApi->SubscribePrivateTopic(TERT_RESUME);

/] Subscription of public stream

144

Trading API & Market Data API Interface Specifications v2.00

pTraderApi->SubscribePublicTopic(TERT_RESUME);

//Set the heartbeat timout period
pTraderApi->SetHeartbeatTimeout(19);

// Set the address of NameServer of Trading System front-end
pTraderApi->RegisterNameServer("tcp://172.16.0.31:17001");

// Enable Member System to create connection with Trading System
pTraderApi->Init();

// Releas of APl instance
pTraderApi->Join();

return 0;

145

Trading API & Market Data API Interface Specifications v2.00

Part I1I MduserAPI Reference Manual

This section is primarily intended for market data receiving system developers, and
includes:

Chapter 1 MduserAPI Interface Categories.

Chapter 2 MduserAPI Interface Description.

Chapter 3 MduserAPI Interface Development Instances.

146

Trading API & Market Data API Interface Specifications v2.00

1. Categories of MduserAPI Interfaces

1.1. Management Interfaces

The MduserAPI management interface is used to control the API lifecycle and runtime

parameters.

Interface Type Interface name Explanation
CShfeFtdcMduserApi:: CreateFtdcMduserApi Create an MduserApi instance
CShfeFtdcMduserApi::GetVersion Get API version

Delete the inst f th
Lifecycle CShfeFtdcMduserApi:: Release . eiete e mstance of the
interface
Management - - ——
CShfeFtdcMduserApi:: Init Initialization
Interfaces Wait for the Interface thread t
CShfeFtdcMduserApi:: Join ait for fhe fnfertace thread fo
end the run
CShfeFtdcMduserApi::GetTradingDay Register to callback interface
CShfeFtdcMduserApi::RegisterSpi Register Front Address
Register to NameS Network
Parameter | CShfeFtdcMduserApi::RegisterFront ceister fo Namesetver Tetwor
address
Management Register to NameServer Network
egister
Interfaces CShfeFtdcMduserApi::RegisterNameServer &
address
CShfeFtdcMduserApi::SetHeartbeatTimeout Set the heartbeat timeout
Subscripti
ubseription CShfeFtdcMduserApi::SubscribeMarketDataTopic Subscribe to market data
Interfaces
Logging CShfeFtdcMduserApi::OpenRequestLog This is to open the request log file
Interface CShfeFtdcMduserApi::OpenResponseLog This is to open the reply log file
When communication with the
CShfeFtdcMduserSpi::OnFrontConnected Trading System is established,
this method will be called
This method will be called when
CShfeFtdcMduserSpi::OnFrontDisconnected communication with the Trading
Communication System is disconnected
Status The method is called when no
Interfaces CShfeFtdcMduserSpi::OnHeartBeatWarning heartbeat message is received
after a long time
Notificati t the start of
CShfeFtdcMduserSpi::OnPackageStart ottication at fhe start o
message callbacks
Notification at the end of
CShfeFtdcMduserSpi::OnPackageEnd otfication at the end 0% essage
callbacks
Disaster
Notification for data str
Recovery CShfeFtdcMduserSpi::OnRtnFlowMessageCancel oued %on or data stream
cancellation
Interface
1.2. Service Interfaces
Service Type Service Request Interface / Response Interface Data Stream
CShfeFtdcMduserApi::ReqUserLogi
Login cricc Y QUSCIAPL--Req L SeILOgM Dialog Stream

CShfeFtdcMduserSpi::OnRspUserLogin

Login-Logout Logout CShfeFtdcMduserApi::ReqUserLogout Dialog Stream
- ul u
& & g CShfeFtdcMduserSpi::OnRspUserLogout &

Change user CShfeFtdcMduserApi::ReqUserPasswordUpdate

Dialog St
password CShfeFtdecMduserSpi::OnRspUserPasswordUpdate 1alog Stream

Subscription Subscribe Topics | CShfeFtdcMduserApi::ReqSubscribeTopic Dialog Stream

147

Trading API & Market Data API Interface Specifications v2.00

Service Type Service Request Interface / Response Interface Data Stream
CShfeFtdcMduserSpi::OnRspSubscribeTopic
. CShfeFtdcMduserApi::ReqQryTopic
T St
Query Topics CShfeFtdcMduserSpi::OnRspQryTopic Query Streams
Market Dat Market Dat
Market Data ar- ¢ _a a CShfeFtdcMduserSpi::OnRtnDepthMarketData arket Data
Notification Stream
Dial
Error Response Error Response CShfeFtdcMduserSpi::OnRspError Stlrie(l)ril;e

148

Trading API & Market Data API Interface Specifications v2.00

2. MduserAPI Interface Description

2.1. CShfeFtdcMduserSpi Interface

The CShfeFtdcMduserSpi implements the event notification interface. Users must
derive the CShfeFtdcMduserSpi interface and write event-handling methods to process the
required events.

2.1.1. OnFrontConnected Method

When the market data receiving system establishes a TCP virtual link (connection) with
the Trading System, this method will be called. The connection is automatically established
by the APL

Function Prototype:

void OnFrontConnected();

Note: Calling OnFrontConnected only indicates that the TCP connection is successful.
The market data receiving system must perform login operations to conduct subsequent
business activities.

2.1.2. OnFrontDisconnected Method

When the communication link between the market data receiving system and the Trading
System is disconnected, this method will be called. Upon disconnection, the API will
automatically reconnect. The reconnection address may be the originally registered address or
another available communication address supported by the system, which is selected
automatically by the program.

Function Prototype:

void OnFrontDisconnected(int nReason);

Parameter:
nReason: disconnection reasons
0x1001, indicates network read failure;
0x1002, indicates network write failure;
0x2001, indicates heartbeat timeout;
0x2002, indicates message encryption failure;
0x2003, indicates message decryption failure;
0x2004, indicates receipt of a message from an unsubscribed topic;
0x2005, indicates discontinuity in received message sequence numbers;
0x2006, indicates illegal message length;
0x2007, indicates message conversion error;
0x2008, indicates login error with front-end service.

2.1.3. OnHeartBeatWarning Method

149

Trading API & Market Data API Interface Specifications v2.00

Heartbeat timeout warning. This method is invoked when no message is received for a
prolonged period. The default timeout warning threshold is 5 seconds. If
SetHeartbeatTimeout (unsigned int timeout) has been called to set a custom heartbeat timeout,
the warning time is timeout/2.

Function Prototype:

void OnHeartBeatWarning(int nTimeLapse);

Parameter:
nTimeLapse: time lapse from last time receiving the message (in seconds)

2.1.4. OnPackageStart Method

Message callback start notification. When the API receives a message belonging to the
market data stream, this method will be called first, followed by individual data field
callbacks, and finally the message callback end notification.

Function Prototype:

void OnPackageStart(int nTopiclD, int nSequenceNo);

Parameter:
nTopicID: Topic ID (e.g., market data topic 1001).
nSequenceNo: Message Sequence Number

2.1.5. OnPackageEnd Method

Message callback end notification. When the API receives a message belonging to the
market data stream, it first calls the message callback start notification, followed by individual
data field callbacks, and finally this method.

Function Prototype:

void OnPackageEnd(int nTopiclD, int nSequenceNo);

Parameter:
nTopicID: Topic (e.g., market data topic 1001).
nSequenceNo: Message Sequence Number

2.1.6. OnRspUserLogin Method

After the Market Data Receiving System sends out login request, and when the Trading
System sends back the response, the Trading System will call this method to inform the
Market Data Receiving System whether the login is successful.

Function Prototype:

void OnRspUserLogin(
CShfeFtdcRspUserLoginField* pRspUserLogin,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,

150

Trading API & Market Data API Interface Specifications v2.00

bool bilsLast);

Parameter:

pRspUserLogin: pointer to the user login information structure. The structure:

struct CShfeFtdcRspUserLoginField {
///trading day
TShfeFtdcDateType TradingDay;
/l/successful login time
TShfeFtdcTimeType LoginTime;

///Maximum local order number, not used
TShfeFtdcOrderLocallDType MaxOrderLocallD;

/l/Trading User ID
TShfeFtdcUserlDType UserlD;
///Exchange Member ID

TShfeFtdcParticipantIDType ParticipantiD;

/l//Trading System Name

TShfeFtdcTradingSystemNameType TradingSystemName;

///Data Center ID

TShfeFtdcDataCenterlDType DataCenterlD;
///Current length of member private stream, not used
TShfeFtdcSequenceNoType PrivateFlowSize;
///Current length of trader private stream, not used
TShfeFtdcSequenceNoType UserFlowSize;

///action day
TShfeFtdcDateType ActionDay;};

pRsplInfo: returns the user response information structure. Error ID of 0 indicates

success, and the same for subsequent descriptions. The response information structure:

struct CShfeFtdcRspinfoField {
//[Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message

TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message
3 Member cannot be found
45 Settlement group initialization
status is incorrect
59 User multiple login
60 Wrong user ID or password
62 User account locked
64 User is not belong to the Member
65 Wrong login IP address
75 Front-end inactive
106 Duplicate session
135 User authentication failed
136 User has no permission for direct

front-end connection

Possible cause

Member ID is wrong when logging in

Trading System initialization is not completed, may try
later

The trading user has logged in already

User ID or password is wrong

Trading System locked the trader’s account

Member ID is wrong

The computer used to login does not have the IP
address allowed by SHFE

Trading System front-end inactive

Multiple logins using the same session

User key verification failed

User has no permission for direct front-end connection

nRequestID: returns the user login request ID; this ID is specified by the user upon

login

151

Trading API & Market Data API Interface Specifications v2.00

bIsLast: indicates whether current return is the last return with respect to the
nRequestID

2.1.7. OnRspUserLogout Method
This method will be called when the Trading System returns a response after the Market

Data Receiving System sends a logout request, indicating whether logout was successful.
Function Prototype:

void OnRspUserLogout(
CShfeFtdcRspUserLogoutField* pRspUserLogout,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameter:
pRspUserLogout: returns the user logout information structure. The structure:

struct CShfeFtdcRspUserLogoutField {
///transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Memebr ID
TShfeFtdcParticipantIDType ParticipantiD;

¥

pRsplnfo: returns the user response information structure. The structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b

Possible errors:

Error ID Error message Possible cause

45 Settlement group initialization Initialization of Trading System is not completed,
status incorrect please try later

66 User not logged in yet User has not logged in yet

67 Not logged in with this user ID User logging out is not the same as the one logged in

68 Not logged in with this Memebr Member logging out is not the same as the one logged
ID in

nRequestID: returns the user logout request ID; this ID is specified by the user upon
logout

bIsLast: indicates whether current return is the last return with respect to the
nRequestID

2.1.8. OnRspSubscribeTopic Method
Subscription topic response. This method will be called when the Trading System returns

a response after the Market Data Receiving System sends a subscription topic instruction.
Function Prototype:

152

Trading API & Market Data API Interface Specifications v2.00

void OnRspSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameter:
pDissemination: pointer to the subscription topic structure, including topic subscribed
and starting message sequence number. The structure:

struct CShfeFtdcDisseminationField {
///sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;
/l/sequence number
TShfeFtdcSequenceNoType SequenceNo;

I3

pRsplnfo: pointer to the response information structure. The structure:

struct CShfeFtdcRsplinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
/l/Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
1 Invalid session or topic does not ~ The topic does not exist or the user lacks the necessary
exist subscription permission

nRequestID: returns the user subscription topic request ID; this ID is specified by the
user upon subscription.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.9. OnRspQryTopic Method
Query topic response. This method will be called when the Trading System returns a

response after the Market Data Receiving System issues a query topic instruction.
Function Prototype:

void OnRspQryTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bisLast);

Parameter:
pDissemination: pointer to the query topic structure, including the topic to be queried
and the number of messages related to that topic. The structure:

struct CShfeFtdcDisseminationField {
/l/sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;

153

Trading API & Market Data API Interface Specifications v2.00

/l//sequence number
TShfeFtdcSequenceNoType SequenceNo;
I3

pRsplnfo: pointer to the response information structure. The structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error Message
TShfeFtdcErrorMsgType ErrorMsg;
b

nRequestID: returns the user query topic request ID; this ID is specified by the user
upon subscription to the topic.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.10. OnRspError Method

Error notification for user requests.
Function Prototype:

void OnRspError(
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameter:
pRsplnfo: pointer to the response information structure. The structure:

struct CShfeFtdcRsplinfoField {
/l/Error ID
TShfeFtdcErrorIDType ErroriD;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

b
Possible errors:
Error ID Error message Possible cause
1 Not Login Not yet logged in
Too High FTD Version FTD version too high
Unrecognized ftd tid FTD message header error
151 Version verification failed Market data API version verification failed
997 api authentication failure Illegal API access
api crypt info failure Query for encrypted information not completed

nRequestID: returns the user operation request ID; this ID is specified by the user upon
making an operation request.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.11. OnRtnDepthMarketData Method

154

Trading API & Market Data API Interface Specifications v2.00

Market data notification. This method will be called when the Trading System notifies
the Market Data Receiving System of market data changes.

Function Prototype:

void OnRtnDepthMarketData(

CShfeFtdcDepthMarketDataField* pDepthMarketData);

Parameter:

pDepthMarketData: pointer to the market data structure. Note: For level-1 quotes,

some fields (such as bid2-bid5, ask2-ask5) are meaningless. The market data structure:

struct CShfeFtdcDepthMarketDataField

{

/l/Business day

TShfeFtdcDateType TradingDay;
/l/Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGrouplD;
/l/Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Latest price

TShfeFtdcPriceType LastPrice;
/l/Yesterday’s settlement
TShfeFtdcPriceType PreSettlementPrice;
/l[Yesterday’s close

TShfeFtdcPriceType PreClosePrice;
/l[Yesterday’s open interest
TShfeFtdcLargeVolumeType PreOpeninterest;
///Today’s open

TShfeFtdcPriceType OpenPrice;

/l[The highest price

TShfeFtdcPriceType HighestPrice;
/l[The lowest price

TShfeFtdcPriceType LowestPrice;
///Quantity

TShfeFtdcVolumeType Volume;
/l[Turnover

TShfeFtdcMoneyType Turnover;
///Open Interest
TShfeFtdcLargeVolumeType Openlnterest;
/l[Today’s close

TShfeFtdcPriceType ClosePrice;
/l[Today’s settlement
TShfeFtdcPriceType SettlementPrice;
//[The upward price limit
TShfeFtdcPriceType UpperLimitPrice;
///The downward price limit
TShfeFtdcPriceType LowerLimitPrice;
/l/Yesterday’s Delta value
TShfeFtdcRatioType PreDelta;
/l[Today’s Delta value
TShfeFtdcRatioType CurrDelta;

///Last modification time
TShfeFtdcTimeType UpdateTime;
///[The last modified millisecond
TShfeFtdcMillisecType UpdateMillisec;

155

Trading API & Market Data API Interface Specifications v2.00

/l/Contract ID
TShfeFtdcinstrumentIDType InstrumentiD;
///Bid price 1

TShfeFtdcPriceType BidPricel;
///Bid volume 1
TShfeFtdcVolumeType BidVolumel;
///Ask price 1

TShfeFtdcPriceType AskPricel;
/l/Ask volume 1
TShfeFtdcVolumeType AskVolumel;
///Bid price 2

TShfeFtdcPriceType BidPrice2;
///Bid volume 2
TShfeFtdcVolumeType BidVolume2;
///Ask price 2

TShfeFtdcPriceType AskPrice2;
///Ask volume 2
TShfeFtdcVolumeType AskVolume2;
///Bid price 3

TShfeFtdcPriceType BidPrice3;
///Bid volume 3
TShfeFtdcVolumeType BidVolume3;
///Ask price 3

TShfeFtdcPriceType AskPrice3;
///Ask volume 3
TShfeFtdcVolumeType AskVolume3;
///Bid price 4

TShfeFtdcPriceType BidPrice4;
///Bid volume 4
TShfeFtdcVolumeType BidVolume4;
///Ask price 4

TShfeFtdcPriceType AskPrice4;
///Ask volume 4
TShfeFtdcVolumeType AskVolume4;
///Bid price 5

TShfeFtdcPriceType BidPrice5;
///Bid volume 5
TShfeFtdcVolumeType BidVolume5;
///Ask price 5

TShfeFtdcPriceType AskPrice5;
///Ask price 5

TShfeFtdcVolumeType AskVolume5;
/l/Action day

TShfeFtdcDateType ActionDay;

2.1.12. OnRtnFlowMessageCancel Method

Data stream rollback notification. After the Trading System undergoes a disaster
recovery switch and when the user logs back into the Trading System and subscribes to a

specific data stream, the Trading System will proactively notify the Market Data Receiving

System that certain messages in the data stream have been invalidated or canceled. At this

156

Trading API & Market Data API Interface Specifications v2.00

time, this method will be called.
Function Prototype:

void OnRtnFlowMessageCancel(
CShfeFtdcFlowMessageCancelField* pFlowMessageCancel);

Parameter:
pFlowMessageCancel: pointer to the data stream rollback structure. The structure:

struct CShfeFtdcFlowMessageCancelField

{
///Sequence Series
TShfeFtdcSequenceSeriesType SequenceSeries;
//[Trading Day
TShfeFtdcDateType TradingDay;
///Data Center ID
TShfeFtdcDataCenterlDType DataCenterlD;
///Start Sequence number
TShfeFtdcSequenceNoType StartSequenceNo;
///[End Sequence number
TShfeFtdcSequenceNoType EndSequenceNo;
b

SequenceSeries: the data stream series to be canceled (private stream or public
stream)
The messages to be canceled is between: (StartSequenceNo,EndSequenceNo)

2.1.13. OnRspUserPasswordUpdate Method

User password update response. This method will be called when the Trading System
returns a response after the Market Data Receiving System issues a user password update
command.

Function Prototype:

void OnRspUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
CShfeFtdcRspinfoField* pRspinfo,
int nRequestID,
bool bilsLast);

Parameter:
pUserPasswordUpdate: pointer to the user password update structure, including the
input data of the user password update request. The user password update structure:

struct CShfeFtdcUserPasswordUpdateField {
/l/transaction user’s ID
TShfeFtdcUserlDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;
///0ld Password
TShfeFtdcPasswordType OldPassword;
///New Password
TShfeFtdcPasswordType NewPassword;

157

Trading API & Market Data API Interface Specifications v2.00

pRsplnfo: pointer to the response message structure. The structure:

struct CShfeFtdcRspinfoField {
///Error ID
TShfeFtdcErrorIDType ErroriD;
///Error Message
TShfeFtdcErrorMsgType ErrorMsg;
b

nRequestID: returns the user password update request ID; this ID is specified by the
user during the update.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.2. CShfeFtdcMduserApi Interfaces

Functions offered by CShfeFtdcMduserApi interfaces include login/logout, market data
subscription, etc.

2.2.1. CreateFtdcMduserApi Method

This is to create an instance of the CShfeFtdcMduserApi; this cannot be created with a

13 t3

new”.
Function Prototype:

static CShfeFtdcMduserApi* CreateFtdcMduserApi(const char* pszFlowPath

- IIII);

Parameter:

pszFlowPath: constant character pointer, used to point to a file catalog/directory that
stores the status of the bulletin/news sent by the Trading System. The default value is the
current directory.
Returned Value:

returns a pointer to an instance of the CShfeFtdcMduserApi.

2.2.2. GetVersion Method

This is to get the API version.
Function Prototype:

const char* GetVersion(int& nMajorVersion, int& nMinorVersion);

Parameter:
nMajorVersion: returns the major version number
nMinorVersion: returns the minor version number
Returned Value:
returns a constant pointer to the version identifier string.

158

Trading API & Market Data API Interface Specifications v2.00

2.2.3. Release Method

Release the internal resources of the current API instance, exit the API working thread,
and set the API exit signal (only sets the exit signal, does not release the instance).
Function Prototype:

int Release();

Returned Value:
0, successful
-9 indicates uninitialized.

2.2.4. Init Method

This is to establish the connection between Market Data Receiving System and the
Trading System. After the connection is established, users can proceed to login.
Function Prototype:

int Init();

Returned Value:
0, successful
-5 indicates already logged in or repeated invocation.

2.2.5. Join Method
Blocks the API working thread. After the API exit signal is triggered, the current API

mstance will be released.
Function Prototype:

int Join();

Returned Value:
0, successful

2.2.6. GetTradingDay Method
This is to get the current trading day. Only after successfully login to the Trading System,

the correct value would be obtained.
Function Prototype:

const char* GetTradingDay();

Returned Value:
Returns a constant pointer to the date information character string.

2.2.7. RegisterSpi Method

159

Trading API & Market Data API Interface Specifications v2.00

This is to register an instance derived from CShfeFtdcMduserSpi instance class. This
instance would be used to complete events handling.
Function Prototype:

void RegisterSpi(CShfeFtdcMduserSpi* pSpi);

Parameter:
pSpi: pointer to an instance that implements the CShfeFtdcMduserSpi interface.

2.2.8. RegisterFront Method

Set the network communication address of market data front-ends. The Trading System
supports multiple market data front-ends, and users can register the network communication
addresses of multiple front-ends simultaneously.

Function Prototype:

int RegisterFront(const char* pszFrontAddress);

Parameter:
pszFrontAddress: pointer to the network communication address of market data front-
ends. The server address is in the format “protocol://ipaddress:port”, e.g.
“tcp://127.0.0.1:17001”. “tcp” in the instance is the transmission protocol, “127.0.0.1”
represents the server address, and “17001” represents the server port number.
Returned Value:
0, successful
-8, indicates the number of registered front addresses exceeds the maximum value;
-10, indicates already initialized.

2.2.9. RegisterNameServer Method

Set the network communication address of the Trading System’s FENS service. The
Trading System has multiple FENS services, and users can register multiple FENS service
network communication addresses simultaneously.

Function Prototype:

int RegisterNameServer(const char* pszNsAddress);

Parameter:
pszNsAddress: pointer to the Trading System FENS service network communication
address. The network communication address is in the format “protocol://ipaddress:port”, e.g.
“tcp://127.0.0.1:17001”. “tcp” in the instance is the transmission protocol, “127.0.0.1”
represents the server address, and “17001” represents the server port number.
Returned Value:
0, successful
-8, indicates the number of registered FENS service addresses exceeds the
maximum value;
-10, indicates already initialized.

160

Trading API & Market Data API Interface Specifications v2.00

2.2.10. SetHeartbeatTimeout Method

Set the heartbeat timeout limit for network communication. When the MduserAPI
establishes a TCP connection with the Trading System, the connection will periodically send
heartbeats to check the connection status. This method is used to set the time for the detecting
heartbeat timeout. The Exchange recommends that the Market Data Receiving System set

the timeout value to between 10 and 30 seconds.

Function Prototype:

int SetHeartbeatTimeout(unsigned int timeout);

Parameter:
timeout: heartbeat timeout time limit (in seconds). If no information is received from the

Trading System for more than timeout/2 seconds, the OnHeartBeatWarning callback will be
triggered. If no information is received from the Trading System for more than timeout
seconds, the connection will be disconnected, triggering the OnFrontDisconnected callback.
Returned Value:

0, successful

-10, indicates already initialized.

2.2.11. OpenRequestL.og Method
Open the request log file. After this method is called, all request messages sent to the Trading

System will be recorded in the specified log file.
Function Prototype:

int OpenRequestLog(const char* pszReqLogFileName);

Parameter:
pszReqLogFileName: the request log file name.
Returned Value:
0, successful
-4, indicates log file opening failed

2.2.12. OpenResponseL.og Method

Open the reply log file. After this method is called, all information returned from the
Trading System will be recorded in the specified log file, including reply message and return
message.

Function Prototype:

int OpenResponselLog(const char* pszRspLogFileName);

Parameter:
pszRspLogFileName: reply log file name.
Returned Value:
0, successful

161

Trading API & Market Data API Interface Specifications v2.00

-4, indicates log file opening failed;
2.2.13. SubscribeMarketDataTopic Method
Subscribe to market data. After subscription, the Trading System will proactively send

market data notifications to the Market Data Receiving System.
Function Prototype:

int SubscribeMarketDataTopic(int nTopiclD, TE_RESUME_TYPE
nResumeType);

Parameter:
nTopicID: The topic ID of the market data to be subscribed, as published by the
Exchange.
NResumeType: Market data re-transmission method type:
TERT RESTART: to re-transmit from current trading day
TERT RESUME: to re-transmit by resuming and continuing from last transmission
TERT_ QUICK: first transmit the market data snapshot, and then transmit all market
data after that. The Exchange recommends that members use this method to
recover market data quickly.
Returned Value:
0, successful
-8, indicates the number of subscribed market data topics exceeds the maximum
limit;
-10, indicates already initialized.

2.2.14. ReqUserLogin Method

User login request.
Function Prototype:

int ReqUserLogin(
CShfeFtdcReqUserLoginField* pReqUserLoginField,
int nRequestiD);

Parameter:
pReqUserLoginField: pointer to the user login request structure. The structure:

struct CShfeFtdcReqUserLoginField {
///trading day
TShfeFtdcDateType TradingDay;
///transaction user’s ID
TShfeFtdcUserIDType UserlD;
/l/member ID
TShfeFtdcParticipantIDType ParticipantiD;
/l/Password
TShfeFtdcPasswordType Password;
//[The user-end product information
TShfeFtdcProductinfoType UserProductinfo;
//[The interface-port product information

162

Trading API & Market Data API Interface Specifications v2.00

TShfeFtdcProductinfoType InterfaceProductinfo;
///Protocol information
TShfeFtdcProtocollnfoType Protocolinfo;
///Datacenter ID
TShfeFtdcDataCenterlDType DataCenterlD;
b
Users must fill in the UserProductinfo field, which specifies the market data
receiving system'’s product information (e.g., software developer, version
number). For instance: "SFIT Mduser V100" represents a market data receiving
program and version developed by a technology company.

nRequestID: returns the user login request ID; this ID is specified and managed by the
user.
Returned Value:
0, successful
-2, Exceeded in-transit market data flow control;
-3, Exceeded market data request flow control;
-5, Already logged in;
-6, Mandatory field is empty (UserProductInfo not provided);
-9, indicates uninitialized;
-12, Connection to front-end not yet established.

2.2.15. ReqUserLogout Method

User logout request.
Function Prototype:

int ReqUserLogout(
CShfeFtdcReqUserLogoutField* pReqUserLogout,
int nRequestiD);

Parameter:
pReqUserLogout: pointer to the user logout request structure. The structure:

struct CShfeFtdcReqUserLogoutField {
/l[Trading User ID
TShfeFtdcUserlDType UserlD;
///Member ID
TShfeFtdcParticipantIDType ParticipantiD;

¥

nRequestID: returns the user logout request ID; this ID is specified and managed by the
user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit market data flow control;
-3, indicates exceeding market data request flow control.

2.2.16. ReqSubscribeTopic Method

163

Trading API & Market Data API Interface Specifications v2.00

Subscribed topic request.
Function Prototype:

int ReqSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestiD);

Parameter:
pDissemination: pointer to the subscribed topic structure, including topic to be
subscribed as well as the starting message sequence number. The structure:

struct CShfeFtdcDisseminationField {
/l/sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;
/l/sequence number
TShfeFtdcSequenceNoType SequenceNo;
b
SequenceSeries: topics to be subscribed
SequenceNo: <0 to re-transmit using the “QUICK” method

nRequestID: returns the user subscribed topic request ID; this ID is specified and

managed by the user.
Returned Value:

0, successful

-1, indicates not logged in;

-2, indicates exceeding in-transit market data flow control;

-3, indicates exceeding market data request flow control,;

-8, indicates the number of subscribed market data topics exceeding the limit.

2.2.17. ReqQryTopic Method

This is the request for querying topic.
Function Prototype:

int ReqQryTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestiD);

Parameter:

pDissemination: pointer to the query topic structure, including topic to be queried. The
structure:

struct CShfeFtdcDisseminationField {
/l/Serial series number: Fill in the topic number to query
TShfeFtdcSequenceSeriesType SequenceSeries;
///Sequence number, unused field
TShfeFtdcSequenceNoType SequenceNo;

b

nRequestID: returns the user query topic request ID; this ID is specified and managed

164

Trading API & Market Data API Interface Specifications v2.00

by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit market data flow control;
-3, indicates exceeding market data request flow control.

2.2.18. ReqUserPasswordUpdate Method

User password update request.
Function Prototype:

int ReqUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
int nRequestID);

Parameter:
pUserPasswordUpdate: pointer to the user password update structure. The structure:

struct CShfeFtdcUserPasswordUpdateField {
///transaction user’s ID
TShfeFtdcUserlDType UserlD;
///member ID
TShfeFtdcParticipantIDType ParticipantiD;
///0ld Password
TShfeFtdcPasswordType OldPassword;
///New Password
TShfeFtdcPasswordType NewPassword;
b

nRequestID: returns the user password update request ID; this ID is specified and
managed by the user.
Returned Value:
0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit market data flow control;
-3, indicates exceeding market data request flow control;
-13, indicates a member ID mismatch;
-14, indicates a user ID mismatch.
Business Description:
This feature is not supported in the current version.

165

Trading API & Market Data API Interface Specifications v2.00

3. MduserAPI Interface Development Instance

// mdusertest.cpp :

/I A simple instance that describes the use of interface for CShfeFtdcTraderApi and
CShfeFtdcTraderSpi.

// When a market data field value equals DBL_MAX (1.7976931348623157e+308), it
actually indicates a null field

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <float.h>

#include "FtdcMduserApi.h"

class CSimpleHandler : public CShfeFtdcMduserSpi
{
public:
// Constructed function that needs an effective pointer pointing to the
CShfeFtdcMduserApi instance
CSimpleHandler(CShfeFtdcMduserApi *pMduserApi) : m_pMduserApi(pMduserApi) {}

~CSimpleHandler() {}

// After the market data receiving system establishes a communication connection with
the Trading System, it must log in

void OnFrontConnected()

{
CShfeFtdcReqUserLoginField reqUserLogin;
memset(&reqUserlLogin, 0, sizeof(reqUserLogin));
strcpy(reqUserlLogin.ParticipantID, "0888");
strcpy(reqgUserLogin.UserID, "0888c1c");
strcpy(reqUserLogin.Password, "1");
strcpy(reqUserLogin.UserProductinfo, "TestMduserAPI V2.00");
//Send login request
int ret = m_pMduserApi ->ReqUserLogin(&reqUserLogin, 0);
if (ret '=0)
{

printf("ReqUserLogin Fail ret = %d\n", ret);

}

// When the communication connection between Market Data Receiving System and
the Trading System is interrupted, this method will be called
void OnFrontDisconnected(int nReason) {
// When disconnection happens, APl would re-connect automatically, and the
Market Data Receiving System does not need to handle
printf("OnFrontDisconnected Reason = %#x.\n", nReason);

}

// This method will be called after the Trading System returns a login response to
indicate whether the login was successful
void OnRspUserLogin(CShfeFtdcRspUserLoginField *pRspUserLogin,
CShfeFtdcRsplinfoField *pRspinfo, int nRequestID, bool bisLast) {
printf("OnRspUserLogin: ErroriD=[%d], ErrorMsg=[%s]\n",
pRspInfo->ErrorlD, pRspinfo->ErrorMsg);

166

Trading API & Market Data API Interface Specifications v2.00

printf("RequestiD=[%d], Chain=[%d]\n", nRequestID, blsLast);
if (pRspInfo->ErroriD !'= 0) {
/I Login failed. Error handling is required
printf("Failed to login, erroriID=%d errormsg=%s requestid=%d chain=%d",
pRspiInfo->ErroriD, pRspinfo->ErrorMsg, nRequestID, blsLast);
}
}

// Depth market data notification, and the Trading System would inform automatically
void OnRtnDepthMarketData(CShfeFtdcDepthMarketDataField *pMarketData) {
// Quotion Receiving System would deal with the returned data based on its own

need
if(pMarketData->OpenPrice!=DBL_MAX)
{
printf(“OpenPrice=%.2f\n",pMarketData->0OpenPrice);
}
}

// Error notification with respect to user request

void OnRspError(CShfeFtdcRspinfoField *pRsplinfo, int nRequestID, bool blsLast) {
printf("OnRspError:\n");

printf("ErrorID=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRsplnfo->ErrorMsg);
printf("RequestiD=[%d], Chain=[%d]\n", nRequestID, blsLast);

// Market Data Receiving System would need to do error handling

}

private:
// Pointer to an instance of CShfeFtdcMduserApi
CShfeFtdcMduserApi *m_pMduserApi;

I3

int main()

{
/I Create an instance of CShfeFtdcTraderApi
CShfeFtdcMduserApi *pMduserApi = CShfeFtdcMduserApi::CreateFtdcMduserApi();
/I Create an instance of event handling
CSimpleHandler sh(pMduserApi);
// Register to an instance of event handling
pMduserApi->RegisterSpi(&sh);
/I Register to required depth market data topic
pMduserApi-> SubscribeMarketDataTopic (1001, TERT_RESUME);
// Set the timeout for heartbeat
pMduserApi->SetHeartbeatTimeout(19);
// Set the Exchange FEP NameServer address
pMduserApi->RegisterNameServer("tcp://192.168.1.1:17011");
// Starts connection with market data FEP of the Trading System
pMduserApi->Init();
// Wait for APl instance to exit
pMduserApi->Join();
return O;

}

167

Trading API & Market Data API Interface Specifications v2.00

Part IV Appendix

1. Error ID List

Error
Error message Reasons for error
number
-1 | Authentication failed Unable to find the authorization ID corresponding to the trading terminal
or the authorization ID does not match
Invalid session or topic does | Subscribed topic does not exist, the number of subscribed topics exceeds
not exist the upper limit, or the user lacks the corresponding subscription
permission
1 Not Login User hasn’t logged in yet
Too High FTD Version FTD version too high
Unrecognized ftd tid FTD message header error
2 | Contract cannot be found Contract not found during operations
3 | Member cannot be found Member cannot be found in each operation
4| Client cannot be found Client cannot be found in each operation
6 | Incorrect Order field Illegal field value was found on the order when inserting the order (out-
of-range of the enumerated value)
Forced closing-out reasons was set in non-forced closing-out order when
inserting the order
7 | Erroneous quote field Illegal field value was found in the quote when inserting the quote (out-
of-range of the enumerated value)
8 | Incorrect field in order Illegal field value was found in the order operation at the time of order
operation operation (out-of-range of the enumerated value)
Fields in the order derived from a quote operation are invalid (e.g., price
not a floating-point number or outside the valid range)
9 | Incorrect field in quote Invalid field values detected during a quote operation (enumeration
operation value out of range, or operation flag set to modify or suspend)
12 | Duplicate order Duplicate local order ID detected when inserting an order
13 | Duplicate quote Local quoto number was duplicate when inserting quote
15 | Client didn’t open an account | It was fount during each operation that the designated client didn’t open
at this member an account at the designated member
16 | 10C to be conducted in Attempting to insert an IOC order outside continuous trading phase
continuous trade session.
17 | GFA to be conducted in call | Attempting to insert a GFA order outside the call auction phase
auction session
19 | Quantity restriction shall be | It was found in inserting the order with a quantity restriction of non-
put on I0C arbitrary quantity that time conditions are not I[OC
20 | GTD order had expired It was found in inserting the GTD order that GTD data had expired
21 | The Min. number exceeds the | It was found in inserting the order with a Min. number requirement that

number of order

the Min. number exceeds the number of order

168

Trading API & Market Data API Interface Specifications v2.00

22

The Exchange’s data is not in
the synchronized state

It was found during operation of each business that the Exchange’s data
is not in the synchronized state

23

The settlement group’s data is
not in the synchronized date

It was found during operation of each business that the settlement
group’s data is not in the synchronized state

24

Order cannot be found

It was found during order operation that order to be operated cannot be
found

25

Quote cannot be found

It was found during quote operation that quote to be operated cannot be
found

While inserting orders/quotes, contract trading status is not continuous
trading, call auction order entry, or call auction balancing

26

This operation is prohibited
by current state

During order/quote operations,

for activation, contract trading status is not continuous trading, call
auction order entry, or call auction balancing;

For other operations, contract trading status is not continuous
trading or call auction order entry

During option exercise/abandonment insertion or operations, or option
self-hedge update/operations, contract trading status is not continuous
trading or trade processing state

During quote demand insertion, contract is not tradable or not in
continuous trading status

28

Order already fully filled

During order/quote operations, the order has already been fully filled

29

Order already canceled

During order/quote operations, the order has already been canceled

30 | Not enough quantity to Remaining quantity after modifying order would be less than 0
modify
31| The client’s open interest is | It was found during each operation that may cause closing out that

insufficient at the time of
closing-out

client’s open interest is insufficient

32

Exceeding client’s position
limit

It was found during each operation that is likely to open a position that it
has exceeded client’s speculative position

33

Insufficient member position
for closing

During operations potentially resulting in position closing, member’s
position is insufficient

34

Exceeding member’s position
limit

It was found during each operation that is likely to open a position that it
has exceeded member’s position limit

35

Account cannot be found

It was found during each operation that the account shall be used for
such operation cannot be found

36 | Inadequate fund It was found during each operation that there is no sufficient fund in the
account
37 | Invalid quantity When inserting orders, performing order operations, inserting quotes,

entering option exercise, submitting option abandonment, or updating
option self-hedge, the quantity is not a positive integer multiple of the
minimum order quantity or exceeds the maximum

45

The settlement group’s
initialization state is not
correct

Trading System is not fully initialized

48

Price not a multiple of
minimum price fluctuation

It was found during each operation that price is not the integral mutiple
of the contract’s tick size

49

Price exceeds the upward
limit

It was found during each operation that the price is higher than the
contract’s upward price limit

50

Price exceeds the downward
limit

It was found during each operation that the price is lower than the
contract’s downward price limit

51

Not authorized to trade

During operations, member, client, or user lacks trading permissions for
the specified contract

169

Trading API & Market Data API Interface Specifications v2.00

52

Only can close out position

During operations that may open a position, member, client, or user only
has permission for closing positions on the specified contract

53

No such trading role

During order insertion, quote insertion, option self-hedge
updates/operations, member does not hold the corresponding client’s
trading role for the specified contract

54

Session Not Found

Session not found during operations

57

Operation shall not be
conducted by other members

It was found during each operation that user conduct operation on behalf
member to whom he is not subordinate

58

Unmatched user

It was found during each operation that user for operation doesn’t match
with user for dialogue

59

duplicate login by user

Duplicate login detected from different IP addresses by the same user

60

Incorrect username or
password

It was found during user’s login or password modification that username
cannot be found or password is incorrect

62

User is not active

During user login or password modification, user lacks permission for
login, trading, or password modification

64

User doesn’t belong to this
member

It was found during user’s login that user doesn’t belong to the
designated member

65

Incorrect IP address of login

It was found during user’s login that user’ IP address is illegal

66

User hasn’t logged in yet

During logout or password modification, user has not yet logged in

67

User not logged in under the
specified account

User logging out differs from user who logged in

68

User hasn’t logged in yet

User not logged in under the specified member during logout or
password modification

70

Quote has been canceled

It was found during quote operation that quote has been canceled

71

Cannot operate on derived
orders

During order operations, user attempts to operate on derived orders

72

Opening positions not
allowed for natural persons

In the delivery month, natural person type clients initiating open
positions or performing activation or modification operations on open
position orders

75

Front-end inactive

Trading System front-end inactive

76

Order has been suspended

It was found during suspension of order that order has already been
suspended

77

Order has been activated

It was found during activation of order that order has already been
activate

78

Date is not set on GTD order

It was found in inserting GTD order that GTD date hasn’t been
designated

79 | Unsupported order type It was found in inserting various orders that this trade at this moment
doesn’t support this order type
80 | User is not authorized to do | User lacks permission for the requested operation

SO

83

Stop-loss order is used for
continuous trade only

Attempting to insert or operate on stop orders outside continuous trading
phase

84

Stop-loss order is required to
be IOC or GFD

It was found in inserting stop-loss order that time condition is neither
10C nor GFD

88

Target user to be operated on
not found

User for quote demand not found during quote operation

89

Incorrect option exercise field

Invalid field detected in option exercise insertion/operation (enumeration
value out of range)

90

Incorrect field in option
exercise operation

Illegal field value was found in option exercise operation when operating
declaration (out-of-range of the enumerated value)

91

Duplicate option exercise

At the time of inserting option exercise, local option exercise number is
duplicate

92

Option exercise has been
canceled

It was found during option exercise operation that declaration has
already been canceled

170

Trading API & Market Data API Interface Specifications v2.00

93

Option exercise cannot be
found

It was found during option exercise operation that to-be-operated
declaration cannot be found

94

Option exercise can only be
used for option

It was found in inserting the option exercise that the contract is non-
option contract

95

The stop-loss price shall be
specified on stop-loss order

No stop price specified during stop order insertion/operation

96

Insufficient hedge quota

During hedge orders or quote insertion, client’s hedge quota is
insufficient

98

Forced liquidation orders
must be used by
administrators

Non-administrator user submitted a forced liquidation order

99

Operation cannot be
conducted by other users

Unauthorized user attempting to operate on orders/quotes inserted by
another user of the same member

100 | Incorrect user type User identified as a market data user during login

101 | Clearing members are not Attempt to perform trading-related operations using a settlement
allowed to trade member account

102 | Corresponding clearing Settlement member not found for the specified member during
member not found operations

103 | Hedge position on that day Attempt to insert the order for closing out today’s position into hedge
cannot be closed out position

106 | Duplicate session Two login attempts issued in the same session

114 | The best price orders are It was found in inserting the best price order that time condition is not
unable to queue 10C

121 | Erroneous option Invalid fields found during option abandonment insertion/operation
abandonment field

122 | Erroneous option Illegal field value was found in the option abandonment at the time of
abandonment operation field | option abandonment operation

123 | Duplicate option Duplicate local option abandonment ID during insertion
abandonment

124 | Option abandonment Option abandonment has been canceled at the time of option
canceled abandonment operation

125 | Option abandonment cannot | Option abandonment cannot be found at the time of option abandonment
be found operation

126 | Option abandonment can only | The contract is non-option contract when inserting the option
be used in futures option abandonment

127 | Not in declaration period Option exercise is not in definitive period when insert or option

abandonment

128 | Only holders of long Option sellers are not allowed to enjoy execution waiver
positions can enjoy execution
waiver

129 | Option exercise or Flag of open or closing position is open position when inserting option
abandonment cannot be open | exercise or abandonment
position

131 | Exceeded client’s intraday Client’s cumulative intraday open volume on a contract exceeds the limit
contract opening limit

132 | Exceeded client’s per-second | Number of client orders on a product within one second exceeds the
order limit for the product limit

133 | Exceeded client’s per-second | Number of client cancellations on a product within one second exceeds
cancel limit for the product the limit

134 | API validation failed Non-official API library used

135 | User authentication failed Developer software not certified by the exchange

136 | User has no permission for User required to obtain front-end addresses through FENS server used
direct front-end connection direct connection mode

137 | Option self-hedge field error | Option self-hedge update contains invalid field values (enumeration

value out of range)

171

Trading API & Market Data API Interface Specifications v2.00

138 | Option self-hedge operation | Invalid field detected in option self-hedge operation (enumeration value
field error out of range)

139 | Duplicate option self-hedge | Duplicate local option self-hedge ID in the option self-hedge update
update

140 | Option self-hedge update has | Targeted option self-hedge update already canceled
been canceled

141 | Option self-hedge update is | The contract in the option self-hedge update is not an option contract
only applicable to options

142 | Option self-hedge not found | Option self-hedge to be operated on cannot be found

143 | Option self-hedge operation | Option self-hedge operation type error
must be deletion

144 | This client’s SelfCloseFlag SelfCloseFlag in option self-hedge update does not match client type
cannot be reserved option
position

145 | This client’s SelfCloseFlag SelfCloseFlag in option self-hedge update does not match client type
cannot be self-hedge option
position

146 | Only holders of long Only option buyers can submit option exercise insertion requests
positions can exercise

147 | User’s new password does New password must meet complexity requirements during modification
not meet requirements (at (minimum 8 characters with digits, uppercase and lowercase letters)
least 8 characters, must
include digits, uppercase and
lowercase letters)

148 | Market price is within a If market price is within a reasonable spread, the client’s quote request
reasonable spread range, and | will not be sent to market makers, namely, the client’s quote request is
quote request is unnecessary | meaningless

149 | Option abandonment Option abandonment events for an option can only be submitted on the
applications can only be option’s expiry date
submitted on option
expiration day

150 | Proprietary member has not | Proprietary members must complete terminal authentication before login
authenticated or
authentication failed before
login

151 | Version verification failed API version verification failed

153 | Market orders must be GFD | Validity type of market order is neither IOC nor GFD during insertion
or IOC orders

154 | Market orders must be Contract status is not in continuous trading phase during market order
entered during continuous insertion
trading

155 | Market orders are supported | Product type is neither futures nor options during market order insertion
only for futures and options

997 | Api authentication failure Illegal API access
Api crypt info failure API encryption information query failed

998 | Query frequency is too high | Query frequency is too high

999 | The last query result is on There are pending query response data yet to be sent
way

1005 | No record During various operations, the record corresponding to the contract is

missing

2. Enumeration Value List

172

Trading API & Market Data API Interface Specifications v2.00

Prefix of

Serial | Description of . L. Code
. enumera- | Name of enumeration | Code description Code name
No. enumeration . No.
tion
. . Broker Broker 1
1 Trading role |ER TradingRole - -
Proprietary trading | Host 2
Futures Futures 1
Option Options 2
Portfolio Combination 3
Spot Spot 4
2 Product type | PC ProductClass EFP EFP 5
Settlement price
trading; trading at | TAS 6
settlement
Arbitrage Spread 7
Non-option NotOptions 0
3 Option type |OT OptionsType Bullish (call) CallOptions 1
Bearish (put) PutOptions 2
Pre-opening BeforeTrading 0
Non-trading NoTrading 1
Continuous trade | Continous 2
Call autction order | AuctionOrdering 3
Call autcti
Trading status 2 al} cton AuctionBalance 4
4 IS InstrumentStatus balancing
of contract Matchi e
a(,: ing ot ca AuctionMatch 5
auction
Close Closed 6
Transaction TransactionProcessin
processing g
Buy-sell Bid B 0
5 .uy s.e D Direction ! o
direction Ask Sell 1
T f Net positi Net 1
6 y}_)e or open PT PositionType L post 1(,)1,1 °
interest Gross position Gross 2
Direction of Net Net 1
7 long and short | PD PosiDirection Long Long 2
open interest Short Short 3
General Speculation 1
8 Hedge flag |HF HedgeFlag Hedge Hedge 3
none None N
Natural person Person 0
9 Type of client |CT ClientType Legal person Company 1
Investment fund Fund 2
Reasons for Auto-switch Automatic 1
contract to Manual switch Manual 2
10 IER InstStatusEnterReason -
enter the Fusing Fuse 3
trading status Fuse mannually FuseManual 4
. Arbitrary price AnyPrice 1
Conditions of . — —
11 ; OPT OrderPriceType Price limit LimitPrice 2
order price - -
Best price BestPrice 3
Position opening Open 0
Closing- f
o.s1_ng outo Close 1
position
12 Offset flag | OF OffsetFlag -
Forced closing-out | ForceClose 2
Closi t today’
Ostg out foday's CloseToday 3

position

173

Trading API & Market Data API Interface Specifications v2.00

Prefix of

Serial | Description of . L. Code
. enumera- | Name of enumeration | Code description Code name
No. enumeration . No.
tion
Closing out
yesterday’s CloseYesterday 4
position
none None N
Non-forced closi
on-loreed closing NotForceClose 0
out
Insufficient fund LackDeposit 1
Client exceeded the | ClientOverPositionLi)
position limit mit
Member exceeded | MemberOverPosition 3
Reasons for the position limit Limit
13 | forced closing- | FCC ForceCloseR Position is not th:
orced closing orceCloseReason ! osition is n(? e NotMultiple 4
out integral multiple
Market abuse Violation 5
Others Other 6
P th
er-s on neat the PersonDeliv 7
delivery day
Hedge volume over | HedgeOverPositio g
position limit nLimit
Fulfilled AllTraded 0
Part of t ti
; a _0) ransaction PartTradedQueueing | 1
is still in the queue
Part of transaction | PartTradedNotQueue)
is not in the queue |ing
14 | Status of order | OST OrderStatus -
The unfulfilled is .
o NoTradeQueueing 3
still in the queue
The unfulfilled is | NoTradeNotQueuei 4
not in the queue ng
Order cancellation |Canceled 5
Normal Normal 0
te derivati DeriveF t 1
15 Type of order |ORDT OrderType Quote .erlva ves er?ve romQuo e-
Portfolio DeriveFromCombina)
derivatives tion
I -
mmediate or 10C 1
cancel order
for thi
Goo.d or this GFS)
Type of valid session
16 P iod TC TimeCondition Good for the day GFD 3
erio
P Good till date GTD 4
Good till canceled |GTC 5
Good f 1l
oo.d or ca GFA 6
auction
Any quantity AV 1
17 Volume type |VC VolumeCondition The Min. quantity |MV 2
Total number (0\% 3
Tri Immediatel Immediatel 1
18 NEEET e ContingentCondition y y
conditions Stop-loss Touch 2
Deletion Delete 0
.) Suspension Suspend 1
19 | Operation flag | AF ActionFlag — -
Activation Active 2
Modification Modify 3

174

Trading API & Market Data API Interface Specifications v2.00

Prefix of
Serial | Description of x . L. Code
. enumera- | Name of enumeration | Code description Code name
No. enumeration . No.
tion
From participants | Participant 0
20 Source of orde | OSRC OrderSource P - p - p
From administrator | Administrator 1
Common
. Common 0
transaction
Option execution | OptionsExecution 1
Transaction of
OTC 2
OTC
Transaction of EFP .
T " derivafi EFPDerived 3
ransaction erivatives
21 TRDT | TradeType Vet
type Transaction of
portfolio CombinationDerived |4
derivatives
Block trad
ock frade BlockTrade 5
execution
Arbitrage-derived .
.g SpreadDerived 6
execution
Provi
reV1ou_s . LastPrice 0
Source of transaction price
22 transaction | PSRC PriceSource Bid price Buy 1
price Ask price Sell 2
Derived price Imply 3
Not executed NoExec n
Already canceled | Canceled c
Execution sucessful | OK 0
Positi f opti
. O,Sl 1o o option NoPosition 1
is inadequate
Fund is inadequate | NoDeposit 2
Member doesn’t L.
. NoParticipant 3
exist
E i - — -
23 xecution OER ExecResult Client doesn’t exist | NoClient 4
result Contract doesn’t
. Nolnstrument 6
exist
No authorization to .
NoRight 7
execute
U bl
nrealsona ¢ InvalidVolume 8
quantity
No adequate .
NoE hHistoryT
historical ornoughtiistorytra 9
. de
transaction
Whether to Reserved Reserve 0
keep the
24 position mark | EOPF ExecOrderPositionFlag
. Not reserved UnReserve 1
after the option
is exercised
Wheth Cl iti
_e. e{ ose p(?s1 on AutoClose 0
position is automatically
closed
25 . EOCF ExecOrderCloseFlag
automatically
. Not closed NotToClose 1
after option
exercrised
Whether option Self-hedge option | CloseSelfOptionPosit
26 SrOPUON| sk | OptSelfCloscFlag ledgeop . P 0
exercise is of position ion

175

Trading API & Market Data API Interface Specifications v2.00

Serial | Description of Prefix of . L. Code
No. | enumeration enufnera- Name of enumeration | Code description Code name No.
tion
self-hedge type Ret?i.ned option ReserveOptionPositi !
position on
Self-hedge futures
position generated | SellCloseSelfFutureP 5
after option seller | osition
exercise
3. Data Type List
Name of data type Basic data type Description of data type
TShfeFtdcErrorIDType int Error ID
TShfeFtdcPriorityType int Priority
TShfeFtdcSettlementIDType int Settlement number
TShfeFtdcMonthCountType int Number of month
TShfeFtdcTradingSegmentSNType int numberof trading sessions
TShfeFtdcVolumeType int Quantity
TShfeFtdcTimeSortIDType int Sequence numberof queue by time
TShfeFtdcSequenceNoType int Sequence number
TShfeFtdcBulletinIDType int Bulletin number
TShfeFtdcMillisecType int Time (millisecond)
TShfeFtdcVolumeMultipleType int Contract multiplier
TShfeFtdcParticipantIDType char[11] Member ID
TShfeFtdcUserIDType char[16] Transaction user’s ID
TShfeFtdcPasswordType char[41] Password
TShfeFtdcClientIDType char[11] Client ID
TShfeFtdcInstrumentIDType char[31] Contract ID
TShfeFtdcProductIDType char[9] Product ID
TShfeFtdcDateType char[9] Date
TShfeFtdcTimeType char[9] Time
TShfeFtdcInstrumentNameType char[21] Contract name
TShfeFtdcProductGrouplDType char[9] Product suite’s ID
TShfeFtdcMarketIDType char[9] Market ID
TShfeFtdcSettlementGroupIDType char[9] Settlement group’s ID
TShfeFtdcOrderSysIDType char[13] Order number
TShfeFtdcExecOrderSysIDType char[13] System number of option exercise
TShfeFtdcQuoteSysIDType char[13] Quoto number
TShfeFtdcTradeIDType char[13] Transaction number

176

Trading API & Market Data API Interface Specifications v2.00

Name of data type Basic data type Description of data type
TShfeFtdcOrderLocallDType char[13] Local order number
TShfeFtdcComeFromType char[21] Source of message
TShfeFtdcAccountIDType char[13] Fund account
TShfeFtdcNewsTypeType char[3] Bulletin type
TShfeFtdcAdvanceMonthType char[4] Month in advance
TShfeFtdcIPAddressType char[16] IP address
TShfeFtdcProductinfoType char[41] Product information
TShfeFtdcProtocollnfoType char[41] Protocol information
TShfeFtdcBusinessUnitType char[21] Business unit
TShfeFtdcTradingSystemNameType char[61] Name of Trading System
TShfeFtdcTradingRoleType char Trading role
TShfeFtdcProductClassType char Product type
TShfeFtdcOptionsTypeType char Option type
TShfeFtdcInstrumentStatusType char Trading status of contract
TShfeFtdcDirectionType char Buy-sell direction
TShfeFtdcPositionTypeType char Type of open interest
TShfeFtdcPosiDirectionType char Direction of long and short open interest
TShfeFtdcHedgeFlagType char Hedge flag
TShfeFtdcClientTypeType char Type of client
TShfeFtdcInstStatusEnterReasonType char ftzj:ns for contract to enter the trading
TShfeFtdcOrderPriceTypeType char Conditions of order price
TShfeFtdcOffsetFlagType char Offset flag
TShfeFtdcForceCloseReasonType char Reasons for forced closing-out
TShfeFtdcOrderStatusType char Status of order
TShfeFtdcOrderTypeType char Type of order
TShfeFtdcTimeConditionType char Type of valid period
TShfeFtdcVolumeConditionType char Volume type
TShfeFtdcContingentConditionType char Trigger conditions
TShfeFtdcActionFlagType char Operation flag
TShfeFtdcOrderSourceType char Source of order
TShfeFtdcTradeTypeType char Transaction type
TShfeFtdcPriceSourceType char Source of transaction price
TShfeFtdcExecResultType char Execution result
TShfeFtdcYearType int Year
TShfeFtdcMonthType int Month

177

Trading API & Market Data API Interface Specifications v2.00

Name of data type Basic data type Description of data type
TShfeFtdcBoolType int Bool type
TShfeFtdcPriceType double Price
TShfeFtdcUnderlyingMultipleType double Contract multiplier for basic commodity
TShfeFtdcCombOffsetFlagType char[5] Combination offset flag
TShfeFtdcCombHedgeFlagType char[5] Combination hedge flag
TShfeFtdcRatioType double Ratio
TShfeFtdcMoneyType double funds
TShfeFtdcLargeVolumeType double Large quantity
TShfeFtdcNewsUrgencyType char Urgency
TShfeFtdcSequenceSeriesType short Serial number in sequence
TShfeFtdcErrorMsgType char[81] Error message
TShfeFtdcAbstractType char[81] Message digest
TShfeFtdcContentType char[501] Message body
TShfeFtdcURLLinkType char[201] WEB address
TShfeFtdcldentifiedCardNoType char[51] Certificate number
TShfeFtdcldentifiedCardNoV1Type char[21] Original certificate number
TShfeFtdcPartyNameType char[81] Name of party involved
TShfeFtdcIldCardTypeType char[16] Type of certificate
TShfeFtdcDataCenterIDType int Datacenter ID
TShfeFtdcBusinessLocalIDType int Local business ID
TShfeFtdcCurrencylDType char[4] Currency ID
TShfeFtdcRateUnitType int Exchange Rate Unit Type
TShfeFtdcExRatePriceType double Exchange Rate Price
TShfeFtdcExecOrderPositionFlagType char i:)ii;:jt;gfipﬁi?ii;gizztain the futures
TShfeFtdcExecOrderCloseFlagType char Xltlizt:z;iziit?sresil?siet;: generated from
TShfeFtdcMacAddressType char[21] MAC address information
TShfeFtdcOptionSelfCloseSysIDType char[13] Option self-hedge system ID
TShfeFtdcOptSelfCloseFlagType char gil::lil_;re;l‘;p osition exercised by the option
TShfeFtdeAuthIDType char[17] Terminal authentication authorization ID
type
4. API Return Value List
Return value Return value meaning

0 | Success

178

Trading API & Market Data API Interface Specifications v2.00

-1 [Not logged in

-2 | Exceeded in-transit flow control

-3 | Exceeded request flow control

-4 | File not found or file read/write failure

-5 | Already logged in or duplicate call

-6 | Mandatory field is empty

-7 | Authentication enabled but authentication failed

-8 | Exceeded maximum number of items

-9 | Not initialized

-10 | Already initialized

-11 | Duplicate ID

-12 | Not yet connected to the front-end

-13 | Member ID mismatch

-14 | User ID mismatch

179

	Part I Introduction to NGES Trading System Interfa
	1. Introduction
	1.1. Background
	1.2. TraderAPI Overview
	1.3. MduserAPI Overview
	1.4. Platforms Supported by TraderAPI/MduserAPI
	1.5. Contact
	1.6. Version History
	1.6.1. Version v2.00

	2. FTD Architecture
	2.1. Communication Mode
	2.2. Data Flows

	3. Interface Mode
	3.1. TraderAPI Interface
	3.1.1. Dialog Stream and Query Stream Programming
	3.1.2. Private Stream Programming Interface
	3.1.3. Public Stream Programming Interface

	3.2. MduserAPI Interface
	3.2.1. Dialog Stream Programming Interface
	3.2.2. Market Data Stream Programming Interface

	4. Operating Mode
	4.1. Workflow
	4.1.1. Initialization Phase
	4.1.2. Function Calling Phase

	4.2. Working Thread
	4.3. Connection with the Trading System
	4.4. Interaction Between TraderAPI and the Trading
	4.5. Interaction Between MduserAPI and the Market
	4.6. Local Files
	4.7. Request and Response Log Files
	4.8. Subscription Methods for Reliable Data Stream
	4.8.1. Re-Transmission Sequence ID Maintained by A
	4.8.2. Re-Transmission Sequence ID Managed by Memb

	4.9. Heartbeat Mechanism
	4.10. Disaster Recovery Interface

	Part II TraderAPI Reference Manual
	1. Categories of TraderAPI Interfaces
	1.1. Management Interfaces
	1.2. Service Interfaces

	2. TraderAPI Interface Description
	2.1. CShfeFtdcTraderSpiInterface
	2.1.1. OnFrontConnected Method
	2.1.2. OnFrontDisconnected Method
	2.1.3. OnHeartBeatWarning Method
	2.1.4. OnPackageStart Method
	2.1.5. OnPackageEnd Method
	2.1.6. OnRspUserLogin Method
	2.1.7. OnRspUserLogout Method
	2.1.8. OnRspUserPasswordUpdate Method
	2.1.9. OnRspSubscribeTopic Method
	2.1.10. OnRspQryTopic Method
	2.1.11. OnRspError Method
	2.1.12. OnRspOrderInsert Method
	2.1.13. OnRspOrderAction Method
	2.1.14. OnRspQuoteInsert Method
	2.1.15. OnRspQuoteAction Method
	2.1.16. OnRspExecOrderInsert Method
	2.1.17. OnRspExecOrderAction Method
	2.1.18. OnRspQryPartAccount Method
	2.1.19. OnRspQryOrder Method
	2.1.20. OnRspQryQuote Method
	2.1.21. OnRspQryTrade Method
	2.1.22. OnRspQryClient Method
	2.1.23. OnRspQryPartPosition Method
	2.1.24. OnRspQryClientPosition Method
	2.1.25. OnRspQryInstrument Method
	2.1.26. OnRspQryInstrumentStatus Method
	2.1.27. OnRspQryBulletin Method
	2.1.28. OnRspQryMarketData Method
	2.1.29. OnRspQryHedgeVolume Method
	2.1.30. OnRtnTrade Method
	2.1.31. OnRtnOrder Method
	2.1.32. OnRtnQuote Method
	2.1.33. OnRtnExecOrder Method
	2.1.34. OnRtnInstrumentStatus Method
	2.1.35. OnRtnInsInstrument Method
	2.1.36. OnRtnBulletin Method
	2.1.37. OnRtnFlowMessageCancel Method
	2.1.38. OnErrRtnOrderInsert Method
	2.1.39. OnErrRtnOrderAction Method
	2.1.40. OnErrRtnQuoteInsert Method
	2.1.41. OnErrRtnQuoteAction Method
	2.1.42. OnErrRtnExecOrderInsert Method
	2.1.43. OnErrRtnExecOrderAction Method
	2.1.44. OnRspQryExecOrder Method
	2.1.45. OnRspQryExchangeRate Method
	2.1.46. OnRspAbandonExecOrderInsert Method
	2.1.47. OnRspAbandonExecOrderAction Method
	2.1.48. OnRspQryAbandonExecOrder Method
	2.1.49. OnRtnAbandonExecOrder Method
	2.1.50. OnErrRtnAbandonExecOrderInsert Method
	2.1.51. OnErrRtnAbandonExecOrderAction Method
	2.1.52. OnRspQuoteDemand Method
	2.1.53. OnRtnQuoteDemandNotify Method
	2.1.54. OnRspOptionSelfCloseUpdate Method
	2.1.55. OnErrRtnOptionSelfCloseUpdate Method
	2.1.56. OnRtnOptionSelfCloseUpdate Method
	2.1.57. OnRspOptionSelfCloseAction Method
	2.1.58. OnErrRtnOptionSelfCloseAction Method
	2.1.59. OnRspQryOptionSelfClose Method
	2.1.60. OnRspAuthenticate Method

	2.2. CShfeFtdcTraderApi Interfaces
	2.2.1. CreateFtdcTraderApi Method
	2.2.2. GetVersion Method
	2.2.3. Release Method
	2.2.4. Init Method
	2.2.5. Join Method
	2.2.6. GetTradingDay Method
	2.2.7. RegisterSpi Method
	2.2.8. RegisterFront Method
	2.2.9. RegisterNameServer Method
	2.2.10. SetHeartbeatTimeout Method
	2.2.11. OpenRequestLog Method
	2.2.12. OpenResponseLog Method
	2.2.13. SubscribePrivateTopic Method
	2.2.14. SubscribePublicTopic Method
	2.2.15. SubscribeUserTopic Method
	2.2.16. ReqUserLogin Method
	2.2.17. ReqUserLogout Method
	2.2.18. ReqUserPasswordUpdate Method
	2.2.19. ReqSubscribeTopic Method
	2.2.20. ReqQryTopic Method
	2.2.21. ReqOrderInsert Method
	2.2.22. ReqOrderAction Method
	2.2.23. ReqQuoteInsert Method
	2.2.24. ReqQuoteAction Method
	2.2.25. ReqExecOrderInsert Method
	2.2.26. ReqExecOrderAction Method
	2.2.27. ReqQryPartAccount Method
	2.2.28. ReqQryOrder Method
	2.2.29. ReqQryQuote Method
	2.2.30. ReqQryTrade Method
	2.2.31. ReqQryClient Method
	2.2.32. ReqQryPartPosition Method
	2.2.33. ReqQryClientPosition Method
	2.2.34. ReqQryInstrument Method
	2.2.35. ReqQryInstrumentStatus Method
	2.2.36. ReqQryMarketData Method
	2.2.37. ReqQryBulletin Method
	2.2.38. ReqQryHedgeVolume Method
	2.2.39. ReqQryExecOrder Method
	2.2.40. ReqQryExchangeRate Method
	2.2.41. ReqAbandonExecOrderInsert Method
	2.2.42. ReqAbandonExecOrderAction Method
	2.2.43. ReqQryAbandonExecOrder Method
	2.2.44. ReqQuoteDemand Method
	2.2.45. ReqOptionSelfCloseUpdate Method
	2.2.46. ReqOptionSelfCloseAction Method
	2.2.47. ReqQryOptionSelfClose Method
	2.2.48. ReqAuthenticate Method

	3. TraderAPI Interface Development Instances
	Part III MduserAPI Reference Manual
	1. Categories of MduserAPI Interfaces
	1.1. Management Interfaces
	1.2. Service Interfaces

	2. MduserAPI Interface Description
	2.1. CShfeFtdcMduserSpi Interface
	2.1.1. OnFrontConnected Method
	2.1.2. OnFrontDisconnected Method
	2.1.3. OnHeartBeatWarning Method
	2.1.4. OnPackageStart Method
	2.1.5. OnPackageEnd Method
	2.1.6. OnRspUserLogin Method
	2.1.7. OnRspUserLogout Method
	2.1.8. OnRspSubscribeTopic Method
	2.1.9. OnRspQryTopic Method
	2.1.10. OnRspError Method
	2.1.11. OnRtnDepthMarketData Method
	2.1.12. OnRtnFlowMessageCancel Method
	2.1.13. OnRspUserPasswordUpdate Method

	2.2. CShfeFtdcMduserApi Interfaces
	2.2.1. CreateFtdcMduserApi Method
	2.2.2. GetVersion Method
	2.2.3. Release Method
	2.2.4. Init Method
	2.2.5. Join Method
	2.2.6. GetTradingDay Method
	2.2.7. RegisterSpi Method
	2.2.8. RegisterFront Method
	2.2.9. RegisterNameServer Method
	2.2.10. SetHeartbeatTimeout Method
	2.2.11. OpenRequestLog Method
	2.2.12. OpenResponseLog Method
	2.2.13. SubscribeMarketDataTopic Method
	2.2.14. ReqUserLogin Method
	2.2.15. ReqUserLogout Method
	2.2.16. ReqSubscribeTopic Method
	2.2.17. ReqQryTopic Method
	2.2.18. ReqUserPasswordUpdate Method

	3. MduserAPI Interface Development Instance
	Part IV Appendix
	1. Error ID List
	2. Enumeration Value List
	3. Data Type List
	4. API Return Value List

