
Trading API & Market Data API
Interface Specifications

Version: 2.00
Document Release Date: 20250912

Trading API & Market Data API Interface Specifications v2.00

I. Revision Records, Approval Records and Audit Records
Revision Records

Version No. Date of Revision Major Revisions

Version: 2.00 20250829

Approval Records

Approving Officers Department (Unit) Date of Approval

Audit Records

Auditors Department (Unit) Date of Audit

Trading API & Market Data API Interface Specifications v2.00

I

Table of contents

Part I Introduction to NGES Trading System Interface .. 1

1. Introduction .. 2
1.1. Background ... 2
1.2. TraderAPI Overview ... 2
1.3. MduserAPI Overview ... 3
1.4. Platforms Supported by TraderAPI/MduserAPI ... 3
1.5. Contact .. 4
1.6. Version History ... 4

1.6.1. Version v2.00 ... 4
2. FTD Architecture ... 5

2.1. Communication Mode ...5
2.2. Data Flows ...6

3. Interface Mode ..8
3.1. TraderAPI Interface ...8

3.1.1. Dialog Stream and Query Stream Programming Interface 8
3.1.2. Private Stream Programming Interface .. 9
3.1.3. Public Stream Programming Interface ... 9

3.2. MduserAPI Interface ... 9
3.2.1. Dialog Stream Programming Interface ...9
3.2.2. Market Data Stream Programming Interface ... 10

4. Operating Mode ..11
4.1. Workflow .. 11

4.1.1. Initialization Phase ... 11
4.1.2. Function Calling Phase ...11

4.2. Working Thread .. 11
4.3. Connection with the Trading System.. 12
4.4. Interaction Between TraderAPI and the Trading Front-end 13
4.5. Interaction Between MduserAPI and the Market Data Front-end 15
4.6. Local Files ... 16
4.7. Request and Response Log Files ...17
4.8. Subscription Methods for Reliable Data Stream...17

4.8.1. Re-Transmission Sequence ID Maintained by API 17
4.8.2. Re-Transmission Sequence ID Managed by Member End System............... 18

4.9. Heartbeat Mechanism ..19
4.10. Disaster Recovery Interface .. 19

Part II TraderAPI Reference Manual ..21
1. Categories of TraderAPI Interfaces ... 22

1.1. Management Interfaces ... 22
1.2. Service Interfaces .. 22

2. TraderAPIInterface Description ...27
2.1. CShfeFtdcTraderSpiInterface ..27

2.1.1. OnFrontConnected Method ..27
2.1.2. OnFrontDisconnected Method ... 27

Trading API & Market Data API Interface Specifications v2.00

II

2.1.3. OnHeartBeatWarning Method ... 27
2.1.4. OnPackageStart Method ...28
2.1.5. OnPackageEnd Method ..28
2.1.6. OnRspUserLogin Method .. 28
2.1.7. OnRspUserLogout Method .. 30
2.1.8. OnRspUserPasswordUpdate Method ...31
2.1.9. OnRspSubscribeTopic Method .. 32
2.1.10. OnRspQryTopic Method ..32
2.1.11. OnRspError Method ...33
2.1.12. OnRspOrderInsert Method ...34
2.1.13. OnRspOrderAction Method ... 37
2.1.14. OnRspQuoteInsert Method .. 40
2.1.15. OnRspQuoteAction Method ...42
2.1.16. OnRspExecOrderInsert Method ... 44
2.1.17. OnRspExecOrderAction Method ... 46
2.1.18. OnRspQryPartAccount Method ... 48
2.1.19. OnRspQryOrder Method ..49
2.1.20. OnRspQryQuote Method ... 51
2.1.21. OnRspQryTrade Method ..53
2.1.22. OnRspQryClient Method ... 55
2.1.23. OnRspQryPartPosition Method ..56
2.1.24. OnRspQryClientPosition Method .. 57
2.1.25. OnRspQryInstrument Method ..59
2.1.26. OnRspQryInstrumentStatus Method .. 60
2.1.27. OnRspQryBulletin Method .. 61
2.1.28. OnRspQryMarketData Method .. 62
2.1.29. OnRspQryHedgeVolume Method ..64
2.1.30. OnRtnTrade Method .. 65
2.1.31. OnRtnOrder Method .. 66
2.1.32. OnRtnQuote Method .. 68
2.1.33. OnRtnExecOrder Method ...69
2.1.34. OnRtnInstrumentStatus Method ...71
2.1.35. OnRtnInsInstrument Method ..71
2.1.36. OnRtnBulletin Method ...72
2.1.37. OnRtnFlowMessageCancel Method .. 73
2.1.38. OnErrRtnOrderInsert Method .. 73
2.1.39. OnErrRtnOrderAction Method ...76
2.1.40. OnErrRtnQuoteInsert Method ..78
2.1.41. OnErrRtnQuoteAction Method .. 81
2.1.42. OnErrRtnExecOrderInsert Method .. 82
2.1.43. OnErrRtnExecOrderAction Method ...84
2.1.44. OnRspQryExecOrder Method ..86
2.1.45. OnRspQryExchangeRate Method .. 87
2.1.46. OnRspAbandonExecOrderInsert Method .. 88
2.1.47. OnRspAbandonExecOrderAction Method ...90
2.1.48. OnRspQryAbandonExecOrder Method ... 92

Trading API & Market Data API Interface Specifications v2.00

III

2.1.49. OnRtnAbandonExecOrder Method ..93
2.1.50. OnErrRtnAbandonExecOrderInsert Method ..95
2.1.51. OnErrRtnAbandonExecOrderAction Method ..96
2.1.52. OnRspQuoteDemand Method .. 98
2.1.53. OnRtnQuoteDemandNotify Method .. 99
2.1.54. OnRspOptionSelfCloseUpdate Method ... 100
2.1.55. OnErrRtnOptionSelfCloseUpdate Method ...102
2.1.56. OnRtnOptionSelfCloseUpdate Method ..103
2.1.57. OnRspOptionSelfCloseAction Method ..104
2.1.58. OnErrRtnOptionSelfCloseAction Method ... 106
2.1.59. OnRspQryOptionSelfClose Method .. 107
2.1.60. OnRspAuthenticate Method ...109

2.2. CShfeFtdcTraderApi Interfaces .. 110
2.2.1. CreateFtdcTraderApi Method .. 110
2.2.2. GetVersion Method .. 110
2.2.3. Release Method .. 110
2.2.4. Init Method ...111
2.2.5. Join Method ..111
2.2.6. GetTradingDay Method ... 111
2.2.7. RegisterSpi Method ..111
2.2.8. RegisterFront Method .. 112
2.2.9. RegisterNameServer Method ... 112
2.2.10. SetHeartbeatTimeout Method .. 112
2.2.11. OpenRequestLog Method .. 113
2.2.12. OpenResponseLog Method .. 113
2.2.13. SubscribePrivateTopic Method .. 113
2.2.14. SubscribePublicTopic Method ... 114
2.2.15. SubscribeUserTopic Method ..114
2.2.16. ReqUserLogin Method ... 115
2.2.17. ReqUserLogout Method ...116
2.2.18. ReqUserPasswordUpdate Method ..116
2.2.19. ReqSubscribeTopic Method ...117
2.2.20. ReqQryTopic Method .. 118
2.2.21. ReqOrderInsert Method ..118
2.2.22. ReqOrderAction Method ..120
2.2.23. ReqQuoteInsert Method ... 121
2.2.24. ReqQuoteAction Method ... 122
2.2.25. ReqExecOrderInsert Method ..123
2.2.26. ReqExecOrderAction Method ..124
2.2.27. ReqQryPartAccount Method ..125
2.2.28. ReqQryOrder Method ...126
2.2.29. ReqQryQuote Method .. 127
2.2.30. ReqQryTrade Method ...127
2.2.31. ReqQryClient Method .. 128
2.2.32. ReqQryPartPosition Method .. 129
2.2.33. ReqQryClientPosition Method ...129

Trading API & Market Data API Interface Specifications v2.00

IV

2.2.34. ReqQryInstrument Method .. 130
2.2.35. ReqQryInstrumentStatus Method ...131
2.2.36. ReqQryMarketData Method ...131
2.2.37. ReqQryBulletin Method ...132
2.2.38. ReqQryHedgeVolume Method ...132
2.2.39. ReqQryExecOrder Method ...133
2.2.40. ReqQryExchangeRate Method ...134
2.2.41. ReqAbandonExecOrderInsert Method ... 134
2.2.42. ReqAbandonExecOrderAction Method ... 135
2.2.43. ReqQryAbandonExecOrder Method ..136
2.2.44. ReqQuoteDemand Method ...137
2.2.45. ReqOptionSelfCloseUpdate Method ..138
2.2.46. ReqOptionSelfCloseAction Method .. 139
2.2.47. ReqQryOptionSelfClose Method ... 140
2.2.48. ReqAuthenticate Method ..141

3. TraderAPI Interface Development Instances ..141
Part III MduserAPI Reference Manual ... 146
1. Categories of MduserAPI Interfaces .. 147

1.1. Management Interfaces ... 147
1.2. Service Interfaces .. 147

2. MduserAPI Interface Description .. 149
2.1. CShfeFtdcMduserSpi Interface ... 149

2.1.1. OnFrontConnected Method ..149
2.1.2. OnFrontDisconnected Method ... 149
2.1.3. OnHeartBeatWarning Method ... 149
2.1.4. OnPackageStart Method ...150
2.1.5. OnPackageEnd Method ..150
2.1.6. OnRspUserLogin Method .. 150
2.1.7. OnRspUserLogout Method .. 152
2.1.8. OnRspSubscribeTopic Method .. 152
2.1.9. OnRspQryTopic Method ..153
2.1.10. OnRspError Method ...154
2.1.11. OnRtnDepthMarketData Method ...154
2.1.12. OnRtnFlowMessageCancel Method .. 156
2.1.13. OnRspUserPasswordUpdate Method ...157

2.2. CShfeFtdcMduserApi Interfaces ...158
2.2.1. CreateFtdcMduserApi Method ...158
2.2.2. GetVersion Method .. 158
2.2.3. Release Method .. 159
2.2.4. Init Method ...159
2.2.5. Join Method ..159
2.2.6. GetTradingDay Method ... 159
2.2.7. RegisterSpi Method ..159
2.2.8. RegisterFront Method .. 160
2.2.9. RegisterNameServer Method ... 160
2.2.10. SetHeartbeatTimeout Method .. 161

Trading API & Market Data API Interface Specifications v2.00

V

2.2.11. OpenRequestLog Method .. 161
2.2.12. OpenResponseLog Method .. 161
2.2.13. SubscribeMarketDataTopic Method .. 162
2.2.14. ReqUserLogin Method ... 162
2.2.15. ReqUserLogout Method ...163
2.2.16. ReqSubscribeTopic Method ...163
2.2.17. ReqQryTopic Method .. 164
2.2.18. ReqUserPasswordUpdate Method ..165

3. MduserAPI Interface Development Instance .. 166
Part IV Appendix ... 168
1. Error ID List ...168
2. Enumeration Value List ...172
3. Data Type List .. 176
4. API Return Value List ... 178

Trading API & Market Data API Interface Specifications v2.00

1

Part I Introduction to NGES Trading System Interface

Chapter 1 gives you an introduction to the two main APIs for the NGES Trading
System—TraderAPI and MduserAPI. TraderAPI is designed for Member System to send
instructions for trading and query, and to receive private stream, public stream, dialog stream
and query stream; MduserAPI is designed for Member System and Market Data Vendor
System to receive market data stream.

Chapter 2 introduces the Futures Trading Data (FTD) Exchange Protocol behind the
two APIs, with a focus on illustration of data stream.

Chapter 3 introduces the programming interfaces of the two APIs with respect to
different types of applications.

Chapter 4 introduces the operating mode of the two APIs, including inter-thread
communication, heartbeat mechanisms, and transmission mechanisms of reliable data stream.

Trading API & Market Data API Interface Specifications v2.00

2

1. Introduction

1.1. Background

Under the unified leadership of the China Securities Regulatory Commission (CSRC),
Shanghai Futures Exchange (SHFE), Zhengzhou Commodity Exchange (ZCE) and Dalian
Commodity Exchange (DCE) jointly studied and developed the Futures Trading Data
Exchange Protocol (i.e. FTD or FTD Protocol). The CSRC officially released the FTD
Protocol (JR/T 0016-2004) on 25th March, 2005, and implemented it as an industry standard
ever since.

The NGES Trading System intrinsically uses the FTD Protocol as the access protocol
for Exchange Member’s remote trading. The FTD Protocol is relatively complex. In order to
reduce the difficulty level of developing Exchange Member’s remote Trading Systems and
improve the reliability level of the Trading Systems, SHFE released a trading API
(TraderAPI) and a market data API (MduserAPI) for the NGES Trading System.

The Member Systems call the TraderAPI to connect to the NGES Trading System, send
request instructions, and receive responses or returns, after which the TraderAPI calls back
the Member Systems. Similarly, the Member Systems or the Market Data Vendor Systems
call the MduserAPI to dock with the NGES Trading System and receive market data, after
which theMduserAPI calls back the Market Data Receiving Systems.

The systems used by Exchange Members and Market Data Vendors to receive the
Exchange’s market data are collectively termed the Market Data Receiving Systems. Both
Member Systems and Market Data Receiving Systems are referred to as Member-End or
Member-End Systems.

The TraderAPI encapsulates the complex protocol conversion, data synchronization and
network communication between Member Systems and the NGES Trading System. Operating
over TCP protocol, the TraderAPI establishes a virtual link communication channel with the
trading front-end processor of the NGES Trading System, enabling trading and query
operations for the Member Systems. The connection channel established via TraderAPI is
characterized by its multi-address registration, automatic reconnection and trading data auto-
retransmission, etc.

Similar to TraderAPI, MduserAPI will establish a TCP-based virtual link channel to
connect to the NGES Trading System’s market data front-end, enabling subscription to and
reception of market data.

1.2. TraderAPI Overview

TraderAPI is a C++-based class library that enables trading functionalities by utilizing
and extending its provided interfaces. These functionalities include: order and quote entry,
order and quote cancellation, submission of option exercise and option abandonment,
cancellation of option exercise and option abandonment, request for quote, fund query, order
and quote request, trade report query, client information query, member position query,
clients position query, contract query, and contract trading status query.
The Windows platform class library supports Windows32 and includes the following five

files:

Trading API & Market Data API Interface Specifications v2.00

3

File Name File Description

FtdcTraderApi.h Trading API header file

FtdcUserApiStruct.h Data structures header files

FtdcUserApiDataType.h Data types header files

ftdtraderapi.dll Dynamic-link library (DLL) binary file

ftdtraderapi.lib Import library (.Lib) file

It is recommended to use Visual Studio 2017 or later versions of the compiler.
The Linux-like platform class library supports RHEL7 and Kylin V10, and includes the

following four files:

File Name File Description

FtdcTraderApi.h Trading API header file

FtdcUserApiStruct.h Data structures header files

FtdcUserApiDataType.h Data types header files

libftdtraderapi.so Dynamic-link library (DLL) binary file

1.3. MduserAPI Overview

MduserAPI is also a C++ based class library that enables market data subscription and
reception functionalities through utilizing and extending its provided interfaces.

The Windows platform class library supports Windows32 and includes the following
five files:

File Name File Description

FtdcMduserApi.h Market data API header file

FtdcUserApiStruct.h Data structures header files

FtdcUserApiDataType.h Data types header files

ftdmdapi.dll Dynamic-link library (DLL) binary file

ftdmdapi.lib Import library (.Lib) file

It is recommended to use Visual Studio 2017 or later versions of the compiler.
The Linux-like platform class library supports RHEL7 and Kylin V10, and includes the

following four files:

File Name File Description

FtdcMduserApi.h Market data API header file

FtdcUserApiStruct.h Data structures header files

FtdcUserApiDataType.h Data types header files

libftdmdapi.so Dynamic-link library (DLL) binary file

1.4. Platforms Supported by TraderAPI/MduserAPI

Trading API & Market Data API Interface Specifications v2.00

4

Currently, the following platforms are supported:
 ARM64/KylinV10: including .h files and .so files
 X86-64/KylinV10: including .h files and .so files
 X86-64/RHEL7: including .h files and .so files
 X86/Windows32: including .h files, .dll files, and .lib files

1.5. Contact

Tel: +86-021-68400802
E-mail: tech@shfe.com.cn

1.6. Version History

1.6.1. Version v2.00

The main changes in this version compared to API 1.0 are as follows:
 The following function interfaces have been removed in this version:

 Traderapi: removed ReqAdminOrderInsert and OnRspAdminOrderInsert
interfaces.

 Traderapi: removed ReqQryMBLMarketData and
OnRspQryMBLMarketData interfaces.

 Traderapi: removed RegisterCertificateFile interface.
 Traderapi: removed RegisterGMCertificateFile interface.
 Traderapi: removed OnRtnAliasDefine interface.
 Traderapi: removed ReqCombOrderInsert, OnRspCombOrderInsert,

ReqQryCombOrder, OnRspQryCombOrder, OnRtnCombOrder,
OnErrRtnCombOrderInsert, OnRtnInsCombinationLeg, and
OnRtnDelCombinationLeg interfaces.

 Traderapi: removed ReqQryInformation and OnRspQryInformation
interfaces.

 Traderapi: removed OnRtnDelInstrument interface.
 Traderapi: removed ReqQryCreditLimit and OnRspQryCreditLimit

interfaces.
 Traderapi: removed RegisterCryptAlgorithm interface.
 MDuserapi: removed RegisterCertificateFile interface.
 MDuserapi: removed RegisterGMCertificateFile interface.
 MDuserapi: removed RegisterCryptAlgorithm interface.

 The following function interfaces have been added in this version:
 MDuserAPI: added “User Password Update Request” interface, cf. [Part III,

2.2.18: ReqUserPasswordUpdate Method].
 MDuserAPI: added “Opening Request Log File” and “Opening Response

Log File” interfaces, cf. [Part III, 2.2.11 OpenRequestLog Method and
2.2.12 OpenResponseLog Method].

mailto:tech@shfe.com.cn

Trading API & Market Data API Interface Specifications v2.00

5

 The following function interfaces have been modified in this version:
 TraderAPI: RegisterFront and RegisterNameServer interfaces have been

updated, with the parameter type changed from char* to const char*, cf.
[Part II, 2.2.8 RegisterFront Method and 2.2.9 RegisterNameServer Method].

 MduserAPI: RegisterFront and RegisterNameServer interfaces have been
updated with the parameter type has changed from char* to const char*, cf.
[Part III, 2.2.8 RegisterFront Method and 2.2.9 RegisterNameServer
Method].

 The following function return values and error reasons have been added in this
version:
 TraderAPI andMduserAPI: added return values for request interfaces in, cf.

[Part IV “API Return Value List”].
 TraderAPI: updated and expanded the API disconnection reasons, cf. [Part

II, 2.1.2 OnFrontDisconnected Method].
 MduserAPI: updated and expanded the API disconnection reasons, cf. [Part

III, 2.1.2 OnFrontDisconnected Method].
 The following enumeration values have been added in this version:

 ProductClass additions: SHFE_FTDC_PC_Spread.
 HedgeFlag additions: SHFE_FTDC_HF_None.
 OffsetFlag additions: SHFE_FTDC_OF_None.
 TradeType additions: SHFE_FTDC_TRDT_SpreadDerived.
 PriceSource additions: SHFE_FTDC_PSRC_Imply.

2. FTD Architecture

2.1. Communication Mode

All communications in the FTD Protocol are based on specific communication modes.
Essentially, a communication mode defines the coordination mechanism between
communicating parties.

The FTD protocol supports three communication modes:
 Dialog Mode
 Private Mode
 Public Mode (i.e. the Broadcast Communication Mode in API 1.0)
Dialog Mode
The Member System initiates communication requests which are received, processed and

responded by the Trading System. Typical operations include order entry and information
queries. This mode follows the standard client/server architecture.

Private Mode
The Trading System actively pushed messages to specific members or their designated

traders based on subscription requests initiated by the Member Systems. Instances include
execution reports and market data notifications.

Public Mode
The Trading System broadcast identical messages to all members. Instances include

Trading API & Market Data API Interface Specifications v2.00

6

public announcements and market-wide information.
Communication modes and network connections don’t maintain simple one-to-one

relationships. To be specific, a single network connection may carry messages sent in
multiple communication modes, while messages sent in one communication mode can also be
transmitted across multiple network connections.

All communication modes follow the process shown in Figure 1:

Figture 1: Message Flow Diagrams for All Communication Modes

2.2. Data Flows

The Trading Front-end supports Dialog Mode, Private Mode, and Public Mode, while

Trading API & Market Data API Interface Specifications v2.00

7

the Market Data Front-end supports only Dialog Mode and Private Mode.
1) Dialog Mode
The Dialog Mode is bidirectional, supporting both dialog data flows (referred to as

DialogFlows) and query data flows (referred to as QueryFlows).
The Member System sends a trading request or query request, and the Trading System

returns a response. No state is maintained for DialogFlows or QueryFlows. In the event of a
system failure, both streams will be reset, and in-transit data may be lost.

2) Private Communication Mode
Private Communication Mode is unidirectional and supports member’s private streams,

trader’s private streams, and market data topic streams (referred to as market data streams).
In Private Communication Mode, the data streams are reliable, and the Trading System

maintains the private or market data streams across the entire system. Within a trading day,
when Member End System resumes its connection after a disconnection, it can request the
Trading System to send the data within private streams or market data streams following a
designated sequence number. The private stream delivers information such as order return and
trade return to the Member System, while the market data stream provides market data
information to the Market Data Receiving System. Private streams are classified into
member’s private stream and trader’s private stream.

The Trading System maintains the private stream of each member. All member-specific
return messages, such as order return and trade return, will be released through the member’s
private stream. Access to a member’s private stream requires the trader to have the
corresponding subscription permissions.

Trader’s private stream is similar to member’s private stream, but it only covers return
message for trades initiated by a particular trader. Every trader has the right to subscribe to his
or her own trader’s private stream.

The market data provided by the Trading System is organized by topics. Each topic
contains market data for a group of contracts. The Exchange defines which topics each market
data user is allowed to subscribe to. Each market data topic corresponds to a market data
stream.

To receive market data notifications, the Market Data Receiving System must subscribe
to one or more market data topics after connecting to the market data front-end processor.

3) Public Communication Mode
The Public Communication Mode is bidirectional and supports public data streams

(referred to as public streams).
The Trading System sends market public information to the Member System. The public

stream is reliable, and the Trading System maintains the public streams across the entire
system. Within a trading day, when Member System resumes its connection after a
disconnection, it can request the Trading System to send the data within public streams
following a designated sequence number.

Trading API & Market Data API Interface Specifications v2.00

8

3. Interface Mode

3.1. TraderAPI Interface

TraderAPI provides two interfaces: CShfeFtdcTraderApi and CShfeFtdcTraderSpi.
These two interfaces are encapsulation on the FTD Protocol.

Member System can send operating requests via CShfeFtdcTraderApi; and it can
handle/process the response and reply from the NGES Trading System by inheriting
CShfeFtdcTraderSpi and reloading the callback functions.

3.1.1. Dialog Stream and Query Stream Programming Interface

The programming interface for communication through dialog stream typically looks
like below.

////Request:
int CShfeFtdcTraderApi::ReqXXX(

CShfeFtdcXXXField* pReqXXX,
int nRequestID);

////Response:
void CShfeFtdcTraderSpi::OnRspXXX(

CShfeFtdcXXXField* pRspXXX,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

The request interface contains two parameters.
The 1st parameter is the requested content, and it cannot be left as empty. This parameter

would use a class according to the type of the request command/content. Please refer to the
appendix “Enumeration Value List” and “Data Type List” for variable types and allowed
values for the members of this class.

The 2nd parameter is the request ID. The request ID is maintained by Member System
and the Exchange advises that every request ID should be unique. The request ID filled in
upon sending the request would be sent back to Member System together with the response
from the NGES Trading System, and user can match a particular request with a particular
response by using this number.

The CShfeFtdcTraderSpi callback function/method would be called upon getting reply
from the Trading System. If there is more than one piece of response data, the callback
function/method would be called multiple times.

The callback function requires four input parameters:
The 1st parameter is the actual data in the response. If there is an error in the process or

if there is no such result, this field may be NULL.
The 2nd parameter is the processed result, indicating whether the processing of the result

for the current request is a success or a failure. If multiple callbacks occur, the value for this
parameter from the 2nd callback onwards might all be NULL.

The 3rd parameter is the request ID filled in when sending the request.

Trading API & Market Data API Interface Specifications v2.00

9

The 4th parameter is the flag for the end of response, indicating whether this is the last
callback for the current response.

3.1.2. Private Stream Programming Interface

As described in section 2.2, data via the private stream is private information for a
particular Exchange Member or a particular trader, including order return, transaction return,
quote return, declaration return etc.

The programming interface for receiving return message via private stream typically
looks like:

void CShfeFtdcTraderSpi::OnRtnXXX(CShfeFtdcXXXField* pXXX);
////or
void CShfeFtdcTraderSpi::OnErrRtnXXX(

CShfeFtdcXXXField* pXXX,
CShfeFtdcRspInfoField* pRspInfo);

The CShfeFtdcTraderSpi callback function/method would be called upon getting return
data from the Trading System via the private stream. The parameter of the callback function is
the specific content of the return.

3.1.3. Public Stream Programming Interface

Public stream data includes public information such as Exchange contracts and
announcements.

The programming interface for receiving return message via public stream typically
looks like:

void CShfeFtdcTraderSpi::OnRtnXXX(CShfeFtdcXXXField* pXXX);

The CShfeFtdcTraderSpi callback function/method would be called upon getting return
data from the Trading System via the public stream. The parameter of the callback function is
the specific content of the return.

3.2. MduserAPI Interface

Similar to the TraderAPI, MduserAPI also provides two interfaces:
CShfeFtdcMduserApi and CShfeFtdcMduserSpi. These two interfaces are encapsulation on
the FTD Protocol.

Market Data Receiving System can send operation request via CShfeFtdcMduserApi
and it can process the return or response from the NGES Trading System by inheriting
CShfeFtdcMduserSpi and reloading the callback functions.

3.2.1. Dialog Stream Programming Interface

The programming interface for communication through dialog stream typically looks
like below.

Trading API & Market Data API Interface Specifications v2.00

10

////Request:
int CShfeFtdcMduserApi::ReqXXX(

CShfeFtdcXXXField* pReqXXX,
int nRequestID);

////Response:
void CShfeFtdcMduserSpi::OnRspXXX(

CShfeFtdcXXXField* pRspXXX,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

The request interface contains two parameters.
The 1st parameter is the requested content, and it cannot be left as empty.
The 2nd parameter is the request ID. The request ID is maintained by Market Data

Receiving System and the Exchange advises that every request ID should be unique. The
request ID filled in upon sending the request would be sent back to Member System together
with the response from the NGES Trading System, and user can match a particular request
with a particular response by using this number.

The CShfeFtdcMduserSpi callback function/method would be called upon getting reply
from the Trading System. If there is more than one piece of response data, the callback
function/method would be called multiple times.

The callback function requires four input parameters:
The 1st parameter is the actual data in the response. If there is an error in the process or

if there is no such result, this field may be NULL.
The 2nd parameter is the processed result, indicating whether the processing of the result

for the current request is a success or a failure. If multiple callbacks occur, the value for this
parameter from the 2nd callback onwards might all be NULL.

The 3rd parameter is the request ID filled in when sending the request.
The 4th parameter is the flag for the end of response, indicating whether this is the last

callback for the current response.

3.2.2. Market Data Stream Programming Interface

Market data stream carries market data information released by the Trading System.
The programming interface for receiving return message via market data stream typically

looks like:

void CShfeFtdcMduserSpi::OnRtnXXX(CShfeFtdcXXXField* pXXX);

The CShfeFtdcMduserSpi callback function/method would be called when receiving
market data. The parameter of the callback function is the specific content of the declaration.

Trading API & Market Data API Interface Specifications v2.00

11

4. Operating Mode

4.1. Workflow

The interaction process between the Member End System and the Trading System can be
divided into two stages: the initialization phase and the function calling phase.

4.1.1. Initialization Phase

In the initialization phase, Member End System has to complete the steps below (for
more details, please refer to the IDs in the Development Instance section).

Steps Member System Market Data Receiving System

1 Generate an instance of CShfeFtdcTraderApi; Generate an instance of CShfeFtdcMduserApi;

2 Generate an event handler instance; Generate an event handler instance;

3 Register an event handler instance; Register an event handler instance;

4 Subscribe to the private stream;
Subscribe to the public stream;

Subscribe to the market data stream;

5 Register the network communication address of
the trading front-end NameServer.

Register the network communication address of
the market data front-end NameServer.

6 Initialization Initialization

4.1.2. Function Calling Phase

In the function calling phase, Member End System can call any of request methods from
the trading or market data interface, e.g. ReqUserLogin, ReqOrderInsert, etc, and also
provide callback functions to receive response and return messages. It should be noted that:

1) Input parameters for the API request function cannot be NULL.
2) The meaning of the output parameter returned from the API request function is: 0

stands for success, other numbers indicate an error. For details of error IDs, please
refer to the Appendix for “Return Value List”.

3) The Member End System is subject to flow control when sending request
commands. If the flow control limit is exceeded, the current request will fail to be
sent.

4) Flow control includes communication flow control and in-transit flow control.
Communication flow control limits the number of requests that can be sent within
one second, while in-transit flow control limits the number of requests that have
been sent but have not yet received a response.

4.2. Working Thread

The Member End System consists of at least two threads: one is the application program
as the main thread, and the other is the API working thread (TraderAPI or MduserAPI). The
communication between the application program and the trading front-end or market data

Trading API & Market Data API Interface Specifications v2.00

12

front-end is driven by the API working thread.
The interfaces provided by CShfeFtdcTraderApi and CShfeFtdcMduserApi are thread-

safe and can be invoked simultaneously by multiple threads.
The callback interface provided by CShfeFtdcTraderSpi is driven by the working

threads of TraderAPI. It receives the required data from the front-end of the Trading System
by implementing the interface method of SPI.

Similarly, the callback interface provided by CShfeFtdcMduserSpi is driven by the
MduserAPI working thread. It collects the required data from market data front-end by
implementing the interface method of SPI.

If there is blocking in callback function of the overloaded application program,
TraderAPI or MduserAPI working thread would also be blocked. In the case, the
communication between API and trading front-end or market data front-end would stop;
therefore, usually quick return is required for callback functions.

Chart 2. TradeAPI working thread Chart 3. MduserAPI working thread

4.3. Connection with the Trading System

TraderAPI and MduserAPI, using the FTD protocol, communicate with the trading
front-end and market data front-end, respectively. They register the Front-End Name Server
(FENS) addresses via the RegisterNameServer method to establish connections with the
trading and market data front-ends.

The Exchange deploys multiple trading and market data front-end servers to achieve load
balancing and mutual backup, thereby enhancing system performance and reliability. To
ensure communication reliability during trading, TraderAPI and MduserAPI can register
multiple FENS addresses. After initialization, the API will attempt to establish a network
connection by selecting one of the registered FENS addresses. If the connection fails, it will

Trading API & Market Data API Interface Specifications v2.00

13

continue trying the remaining addresses one by one until a connection is successfully
established.

The Exchange will publish at least two FENS addresses; therefore, the Member System
should register at least two FENS addresses to avoid single points of failure in case the
connected FENS becomes unavailable.

4.4. Interaction Between TraderAPI and the Trading Front-end

The Member System interacts with the trading front-end through TraderAPI. Requests
from the Member System are sent to the Trading Front-end via TraderAPI. Responses and
returns from the Trading Front-end are returned to the Member System through TraderAPI.

The trading interfaces and private stream interfaces of TraderAPI are correlated. For
instance, when a user (i.e., trader) submits an order entry request via ReqOrderInsert, the
system will return an order response OnRspOrderInsert to indicate that the Trading System
has received the order. Once the order enters the Trading System, if there is any change in the
order’s status, an order return OnRtnOrder will be returned. If the order is matched (either
fully or partially), a transaction return OnRtnTrade will be received. In such cases, the order
and transaction returns of one user may also be received by other traders under the same
member firm, provided those traders have the permission to subscribe to the member’s private
stream and have done so.

Let’s illustrate the concept with a day-to-day trading instance. Assuming there are two
Member Systems A and B, the interaction process is as follows:

1) Trader A places an order, with details: cu2511, buy, 20 lots, 74,000 RMB
 CShfeFtdcTraderApi::ReqOrderInsert: Order entry request. This function

is called by the main application thread of Member System, and sent to the
front-end of the Trading System through dialog stream.

 Order Processing of the Trading System: The order’s System ID is
numbered 1. Because there is no counterparty in matching queue at the
moment, the order status is “Not Traded and Still Queuing”. The front-end
of the Trading System send order response to the dialog stream of Trader A;
the delivered order is returned to the private stream of Trader A and the private
stream of the member to whom Trader A is subordinate. Both the order
response and the order return message are processed by TraderAPI working
thread with the calling of the SPI object methods.

 CShfeFtdcTraderSpi::OnRspOrderInsert: The front-end of the Trading
System provides a reply for the request with contents: entry is successful, and
the order with Local ID 1 is numbered as System ID 1. This function is called
by TraderAPI working thread after receiving the reply from the front-end of
the Trading System.

 CShfeFtdcTraderSpi::OnRtnOrder: The front-end of the Trading System
immediately provides order return to private stream of Trader A or private
stream of the Member to whom Trader A is subordinate. This function is called
by the TraderAPI working thread after receiving the order return from the
front-end of the Trading System. If there are other traders of Member A who
login into the Trading System and subscribe to the private stream of Member

Trading API & Market Data API Interface Specifications v2.00

14

A, they will receive the same order return message (similarly in the below
case).

2) TraderB places an order, with details: cu2511, sell, 10 lots, 74,000 RMB
 CShfeFtdcTraderApi::ReqOrderInsert: Order entry request.
 Order Processing of the Trading System: The order’s System ID is

numbered 2. Matching is attempted and succeeds, thus the order is in the status
of “All Filled”. The front-end of the Trading System sends: order response to
Trader B’s dialog stream; order return to the private stream of Trader B and the
private stream of the Member to whom Trader B is subordinate; transaction
return to the private stream of Trader B and the private stream of the Member
to whom Trader B is subordinate; order return to the private stream of Trader
A and the private stream of the Member to whom Trader A is subordinate,
informing that the status of the order with System ID 1 has been changed by
the Trading System to “Partially Filled and Still Queuing”, and that the
“remaining unfilled lot” is 10; transaction return to the private stream of Trader
A and the private stream of the Member to whom Trader A is subordinate.
NGES Trading System would ensure that: order return would be
delivered to Member System ahead of the transaction return; “remaining
unfilled lot” field in order return has already reflected the updated
amount in the order book of the Trading System.

 CShfeFtdcTraderSpi::OnRspOrderInsert: The trading front-end provides a
reply for the request, with contents that order entry is successful, and the order
with Local ID 1 is numbered with System ID 2.

 CShfeFtdcTraderSpi::OnRtnOrder: The trading front-end provides order
return to the private stream of Trader B and the private stream of the Member
to whom Trader B is subordinate; the order status is “All Filled”.

 CShfeFtdcTraderSpi::OnRtnTrade: The trading front-end provides
transaction return to the private stream of Trader B and the private stream of
the Member to whom Trader B is subordinate.

 CShfeFtdcTraderSpi::OnRtnOrder: The trading front-end provides order
return to the private stream of Trader A and the private stream of the Member
to whom Trader A is subordinate; Order status is “Partially Filled and Still
Queuing”, and the “remaining unmatched lot” is 10.

 CShfeFtdcTraderSpi::OnRtnTrade: The trading front-end provides
transaction return to the private stream of Trader A and the private stream of
the Member to whom Trader A is subordinate.

3) Trader A cancels the order
 CShfeFtdcTraderApi::ReqOrderAction: Order operating request. This

function is called by the Member System and sent to the front-end of the
Trading System through dialog stream.

 Cancellation processing by the Trading System: The remaining order with
System ID 1 is canceled. The front-end of the Trading System send
cancellation response to the dialog stream of Trader A; the delivered order is
returned to the private stream of Trader A and the private stream of the
member to whom Trader A is subordinate. Both the order response and the
order return message are processed by TraderAPI working thread with the

Trading API & Market Data API Interface Specifications v2.00

15

calling of the SPI object methods.
 CShfeFtdcTraderSpi::OnRspOrderAction: A response to the request is

given by the front-end of the Trading System, with the content being: The
cancellation was successful. This function is called by TraderAPI working
thread after receiving the reply from the front-end of the Trading System.

 CShfeFtdcTraderSpi::OnRtnOrder: This function is called by the
TraderAPI working thread after receiving the order return from the front-end
of the Trading System. If there are other traders of Member A who login into
the Trading System and subscribe to the private stream of Member A, they will
receive the same order return message.

The following chart describes the UML interaction among the Member System,
TraderAPI and the Trading System.

Chart 4: Illustration of the interaction between Member System and the Trading System

4.5. Interaction Between MduserAPI and the Market Data Front-end

The Market Data Receiving System interacts with the Market Data Front-end via
MduserAPI. Requests from the Market Data Receiving System are sent to the Market Data
Front-end through MduserAPI, and responses and returns from the front-end are returned to
the receiving system throughMduserAPI.

Take a market data vendor’s subscription to market data as an instance. The market data
vendor subscribes to a market data topic 1001 in a snapshot mode via the Market Data
Receiving System A, and the interaction process is as follows:

 CShfeFtdcMduserApi::SubscribeMarketDataTopic: Subscription to a market
data topic. This function is called by the Market Data Receiving System.

 CShfeFtdcMduserApi::ReqUserLogin: Login request. This function is called by

Trading API & Market Data API Interface Specifications v2.00

16

the Market Data Receiving System, and sent to the front-end of the Market Data
Front-end through dialog stream.

 Request processing by the Trading System: if the login request is valid, the
Market Data Front-end will send a login request response to market data vendors
through the dialog stream, and send market data notifications to market data
vendors through the market data stream. Both the order response and the market
data notification message are processed byMduserAPI working thread.

 CShfeFtdcMduserSpi::OnRspUserLogin: The response to the login request is
given by the Market Data Front-end. This function is called byMduserAPI working
thread after receiving the reply from the Market Data Front-end.

 CShfeFtdcMduserSpi::OnRtnDepthMarketData: The Market Data Front-end
sends the latest snapshot for topic 1001 through the market data stream subscribed
by market data vendors. This function is called by MduserAPI working thread after
receiving the market data notification from the Market Data Front-end.

 CShfeFtdcMduserApi::OnRtnDepthMarketData: The Market Data Front-end
sends incremental updates for topic 1001 through the market data stream subscribed
by market data vendors.This function is called by MduserAPI working thread after
receiving the market data notification from the Market Data Front-end.

The following chart describes the UML interaction among the Market Data Receiving
System,MduserAPI and the Trading System.

Chart 5: Illustration of the interaction between Market Data Receiving System
and the Trading System

4.6. Local Files

During runtime, TraderAPI would write some data into local files. When calling the
CreateFtdcTraderApi function, an input parameter can be passed to specify the local file path.

Trading API & Market Data API Interface Specifications v2.00

17

This path must be created before runtime. The file extension of all local files is “trade.con”.
MduserAPI works similarly as TraderAPI, whereas the function called is

CreateFtdcMduserApi. The file extension of all local files is “md.con”.

4.7. Request and Response Log Files

TraderAPI offers two log interfaces for recording communication logs.
OpenRequestLog is used to open the request log and OpenResponseLog is used to open the
response log. If the logs are opened, all service requests would be written into the request log,
and all service responses and returns would be recorded into the response log. Password fields
in login requests, password change requests/responses, and the authentication token in
terminal authentication requests are omitted from the logs.

Request Format:
Timestamp, request name, request parameter name = “request parameter content”
Response Format:
Timestamp, response name, response ID, response information, response parameter

name = “response parameter content”
Return Format:
Timestamp, return name, return parameter name = “return parameter content”

4.8. Subscription Methods for Reliable Data Stream

In the FTD protocol, the private stream, public stream and market data stream, etc,
which can transmit data from one side to the other side in a reliable and orderly manner, are
called reliable data streams. Reliable data streams are critical to ensure the correctness and
completeness of the data in the Member End System. For instance, the Member System may
obtain sufficient information through various return messages in the Member’s private stream,
so that the Member System could complete its business processing at the Member’s end. In
order to guarantee the correctness of business operations in the Member End System,
messages in the private stream have to be received in a reliable, orderly and unique manner.

Reliable data stream relies on a re-transmission mechanism to guarantee the reliable and
orderly delivery of data. The Member End System is responsible for managing the Sequence
ID of the data stream. In case of transmission interruption, the system could re-subscribe to
the data stream from a specified Sequence ID to ensure data integrity.

The dialog stream and query stream do not support re-transmission; therefore, they are
unreliable streams.

API offers two methods for managing reliable data streams: re-transmitted message
serial number managed by the API and re-transmitted message serial number managed by the
Member End System.

4.8.1. Re-Transmission Sequence ID Maintained by API

The API periodically writes the sequence ID of received reliable data stream messages to
local files trade.con and md.con. If the Member System re-subscribes data stream after its
logout, then the message sequence ID recorded in the local file can be used for subscription of

Trading API & Market Data API Interface Specifications v2.00

18

the data stream. If the Member-end System is unexpectedly disconnected, the sequence ID of
the last received message may not have been written to the local file. After re-connection, the
same message may be delivered twice to the Member End System, in which case the Member
End System should perform de-duplication processing.

SubscribePrivateTopic, SubscribePublicTopic, and SubscribeUserTopic from
CShfeFtdcTraderApi and SubscribeMarketDataTopic from CShfeFtdcMduserApi are used
to subscribe to reliable data streams.

Subscription methods can be designated via interface parameters, which are classified
into three modes: RESTART (retransmission), RESUME (resuming of a transmission) and
QUICK (snapshot).

 RESTART mode starts the re-transmission from the 1st message in the stream, and
in this case, the message Sequence ID recorded in the local file is ignored.

 RESUME mode starts the re-transmission following the Sequence ID recorded in
the local file. If it is a market data stream, a snapshot of the thematic market data at
that moment will be transmitted first, and then the market data transmission will be
started from a specified Sequence ID. In order to maintain the integrity of members’
trading data, SHFE recommends the “RESUME” mode for the private stream of the
member or the trader.

 QUICK mode starts the re-transmission at the maximum Sequence ID at the
moment of subscribing the data stream. If it is a market data stream, the latest
market data snapshot of the topic will be transmitted first. The QUICK mode is
mainly used for occasions in which there are no need to guarantee the data integrity,
such as quick receiving and resuming of market data after breakdown of
communication or software. As for the member’s or trader’s private stream, SHFE
does not recommend the use of QUICK method.

Note: if a reliable data stream message has been notified to the Member End System
through the callback function of SPI, but the corresponding message sequence ID has not
been written in the file, the same message will be called back to the Member End System
twice.

4.8.2. Re-Transmission Sequence ID Managed by Member End System

Whenever the API receives a message from the reliable data stream, it first calls the
OnPackageStart function of the SPI to inform the Member End System that a message has
been received, then calls the callback function of the SPI to notify the Member End System to
process the business data, and finally calls the OnPackageEnd function of the SPI to inform
the Member End System that the callback of the message is completed. From the interfaces
OnPackageStart and OnPackageEnd, the Member End System can obtain the Sequence ID
of the current callback message, and record the Sequence ID if necessary. When re-
transmitting the reliable data stream, the recorded Sequence ID would be used as the
parameter for the ReqSubscribeTopic method (similar to the RESUME mode).

Via the ReqSubscribeTopic method, the Member End System can specify the message
Sequence ID for data stream re-transmission. If the Sequence ID is 0, the entire data stream
would be re-transmitted (similar to RESTART mode); and if the specified Sequence ID is -1,
the message re-transmission would start from the largest Sequence ID at the moment of

Trading API & Market Data API Interface Specifications v2.00

19

subscription (similar to the QUICK mode).
As for the subscription of the market data stream, if the specified re-transmission

Sequence ID is not 0, the market data snapshots before the generation of this Sequence ID
message will be transmitted first.

4.9. Heartbeat Mechanism

Heartbeat message is added to check whether the connection is valid or not. If one side
does not receive any heartbeat message within a specified timeout period, it could be
considered that the TCP virtual link is invalid. In this case, this side should take the initiative
to disconnect the link; if one side does not send any business message to the other side within
a certain time interval, it should send heartbeat message to the other side to maintain the
normal working status of the virtual link.

The API provided the SetHeartbeatTimeout method to set the timeout period for the
Member End System to monitor the validity of the TCP virtual link. The Trading System
regularly sends heartbeat messages to the API. If no message is received from the Trading
System in more than timeout/2 seconds, the callback function OnHeartBeatWarning will be
triggered; and if no message is received from the Trading System after timeout, TCP
connection will be interrupted and the callback function OnFrontDisconnected will be
triggered.

For instance, assuming that the member side sets the heartbeat timeout period to be 16
seconds. If API does not receive any message from the Trading System in 8 seconds, the
callback function OnHeartBeatWarning would be triggered. If no message is received in 16
seconds, API would take the initiative to disconnect the network and trigger the callback
function OnFrontDisconnected.

The front-ends of both the Trading System and the Market Data Receiving System
monitor the TCP connection of the Member End System via the heartbeat mechanism, and the
timeout parameter is also used for the two front-ends to monitor the Member End System.
The timeout parameter would be set to 10 seconds by default. The minimum allowable value
of the timeout parameter is 4 seconds and the maximum is 181 seconds.

If the timeout parameter is set at a too high level, in the situation of link disruption, a
much longer time would be taken for the Member End System to switch to the alternative link;
and if the timeout parameter is set at a too low level, unexpected switching might occur.
Therefore, the timeout setting requires a comprehensive consideration among the application
of the Member End System and the status of the network.

A timeout value of 10-30 seconds is recommended for the Member End System.

4.10. Disaster Recovery Interface

SHFE has built three data centers: Zhangjiang data center, Shanghai Futures Tower data
center, and Beijing data center. The three data centers use high-speed optical fiber to connect
each other. Zhangjiang data center is the current main data center. The Trading System runs
simultaneously at the three data centers: the main center is responsible for business processing,
and the backup centers receive data from the main center in real time.

When data center switching occurs, the backup data center takes over the work of the

Trading API & Market Data API Interface Specifications v2.00

20

main data center and continues business processing. During the data center switching, a small
amount of the business data might be lost. The Member End System needs to know the
Sequence ID of the data stream to be canceled via the API interfaces.

1) The “Data Center ID” field in the API user login request message is used to identify
the last logged-in data center. The Trading System returns the currently used data
center in the user login response message.

2) The Member End System can obtain the Sequence ID of the data stream to be
canceled according to the API “Data Stream Cancellation”
(OnRtnFlowMessageCancel) interface.

3) The Sequence IDs of the data stream to be canceled include the starting Sequence
ID and the ending Sequence ID of the cancellation. The data between the two
Sequence IDs is considered invalid data. The Member End System needs to perform
cancellation processing on the received data based on the Sequence IDs of the data
stream to be canceled. For instance, if the current Member End System requests to
subscribe to the data stream starting from Sequence ID 100, and the data stream
cancellation notification returned by the Trading System indicates that the starting
Sequence ID for cancellation is 95 and the ending Sequence ID is 100, then the
Member End System needs to perform a cancellation operation on the data
numbered 96 to 100. If the Member End System has the need to subscribe to
subsequent data, the Exchange suggests resubscribing starting from the initial
Sequence ID 95.

Trading API & Market Data API Interface Specifications v2.00

21

Part II TraderAPI Reference Manual

Part II is designed for Member’s system developers, including:
Chapter 1 is the categories of TraderAPI interfaces.
Chapter 2 is the description of TraderAPI interfaces.
Chapter 3 is a development instance of TraderAPI interfaces.

Trading API & Market Data API Interface Specifications v2.00

22

1. Categories of TraderAPI Interfaces

1.1. Management Interfaces

TraderAPI management interfaces control the life cycle and operating parameter of API.
Interface Type Interface Name Explanation

Lifecycle
Management
Interfaces

CShfeFtdcTraderApi:: CreateFtdcTraderApi Create a TraderApi instance

CShfeFtdcTraderApi:: GetVersion Gain API version

CShfeFtdcTraderApi:: Release Delete the instance of the interface

CShfeFtdcTraderApi:: Init Initialization

CShfeFtdcTraderApi:: Join Wait for the interface thread to end the run

CShfeFtdcTraderApi:: GetTradingDay Get the current trading day

Parameter
Management
Interfaces

CShfeFtdcTraderApi:: RegisterSpi Register to callback interface

CShfeFtdcTraderApi:: RegisterFront
Register to FEP network communication
address

CShfeFtdcTraderApi:: RegisterNameServer Register to FENS address

CShfeFtdcTraderApi:: SetHeartbeatTimeout Set heartbeat timeout

Subscription
Interfaces

CShfeFtdcTraderApi:: SubscribePrivateTopic Subscribe to member private stream

CShfeFtdcTraderApi:: SubscribePublicTopic Subscribe to public stream

CShfeFtdcTraderApi:: SubscribeUserTopic Subscribe to trader’s private stream

Logging interface
CShfeFtdcTraderApi:: OpenRequestLog Open request log file

CShfeFtdcTraderApi:: OpenResponseLog Open response log file

Communication
Status Interfaces

CShfeFtdcTraderSpi:: OnFrontConnected
The method is called when communication
with the Trading System connection is
established.

CShfeFtdcTraderSpi:: OnFrontDisconnected
This method will be called when
communication with the Trading System is
disconnected.

CShfeFtdcTraderSpi:: OnHeartBeatWarning
The method is called when no heartbeat
message is received after a long time.

CShfeFtdcTraderSpi:: OnPackageStart Notification for start of message callback

CShfeFtdcTraderSpi:: OnPackageEnd
Notification for end of the message
callback

Disaster Recovery
Interfaces

CShfeFtdcTraderSpi::
OnRtnFlowMessageCancel

Notification for data stream cancellation

1.2. Service Interfaces

Service
Type

Service Request Interface / Response Interface
Data
Stream

Login Login CShfeFtdcTraderApi:: ReqUserLogin Dialogue

Trading API & Market Data API Interface Specifications v2.00

23

Service
Type

Service Request Interface / Response Interface
Data
Stream

CShfeFtdcTraderSpi:: OnRspUserLogin Stream

Logout
CShfeFtdcTraderApi:: ReqUserLogout
CShfeFtdcTraderSpi:: OnRspUserLogout

Dialogue
Stream

User Password
Update

CShfeFtdcTraderApi:: ReqUserPasswordUpdate
Dialogue
Stream

User Password
Update

CShfeFtdcTraderSpi:: OnRspUserPasswordUpdate
Dialogue
Stream

Terminal
Authentication

CShfeFtdcTraderApi:: ReqAuthenticate
CShfeFtdcTraderSpi:: OnRspAuthenticate

Dialogue
Stream

Subscription

Topic/Theme/
Subject

Subscription

CShfeFtdcTraderApi:: ReqSubscribeTopic
CShfeFtdcTraderSpi:: OnRspSubscribeTopic

Dialogue
Stream

Topic/Theme/
Subject Query

CShfeFtdcTraderApi:: ReqQryTopic
CShfeFtdcTraderSpi:: OnRspQryTopic

Query
Stream

Trading

Order Entry
CShfeFtdcTraderApi:: ReqOrderInsert
CShfeFtdcTraderSpi:: OnRspOrderInsert

Dialogue
Stream

Order Action
CShfeFtdcTraderApi:: ReqOrderAction
CShfeFtdcTraderSpi:: OnRspOrderAction

Dialogue
Stream

Price
Quotation
Entry

CShfeFtdcTraderApi:: ReqQuoteInsert
CShfeFtdcTraderSpi:: OnRspQuoteInsert

Dialogue
Stream

Price
Quotation
Action

CShfeFtdcTraderApi:: ReqQuoteAction
CShfeFtdcTraderSpi:: OnRspQuoteAction

Dialogue
Stream

Declaration
Entry

CShfeFtdcTraderApi:: ReqExecOrderInsert
CShfeFtdcTraderSpi:: OnRspExecOrderInsert

Dialogue
Stream

Declaration
Action

CShfeFtdcTraderApi:: ReqExecOrderAction
CShfeFtdcTraderSpi:: OnRspExecOrderAction

Dialogue
Stream

Abandon
Declaration

Entry

CShfeFtdcTraderApi:: ReqAbandonExecOrderInsert
CShfeFtdcTraderSpi:: OnRspAbandonExecOrderInsert

Dialogue
Stream

Abandon
Declaration
Action

CShfeFtdcTraderApi:: ReqAbandonExecOrderAction
CShfeFtdcTraderSpi:: OnRspAbandonExecOrderAction

Dialogue
Stream

Quote Demand
Entry

CShfeFtdcTraderApi:: ReqQuoteDemand
CShfeFtdcTraderSpi:: OnRspQuoteDemand CShfeFtdcTraderSpi::
OnRtnQuoteDemandNotify

Dialogue
Stream

Option Self-
Hedging
Update

CShfeFtdcTraderApi:: ReqOptionSelfCloseUpdate
CShfeFtdcTraderSpi:: OnRspOptionSelfCloseUpdate

Dialogue
Stream

Option Self-
Hedging
Action

CShfeFtdcTraderApi:: ReqOptionSelfCloseAction
CShfeFtdcTraderSpi:: OnRspOptionSelfCloseAction

Dialogue
Stream

Private Trade Return CShfeFtdcTraderSpi:: OnRtnTrade Private

Trading API & Market Data API Interface Specifications v2.00

24

Service
Type

Service Request Interface / Response Interface
Data
Stream

Return Stream

Order Return CShfeFtdcTraderSpi:: OnRtnOrder
Private
Stream

Price
Quotation
Return

CShfeFtdcTraderSpi:: OnRtnQuote
Private
Stream

Order
Execution
Return

CShfeFtdcTraderSpi:: OnRtnExecOrder
Private
Stream

Order Entry
Error Return

CShfeFtdcTraderSpi:: OnErrRtnOrderInsert
Private
Stream

Order Action
Error Return

CShfeFtdcTraderSpi:: OnErrRtnOrderAction
Private
Stream

Price
Quotation
Entry

Error Return

CShfeFtdcTraderSpi:: OnErrRtnQuoteInsert
Private
Stream

Price
Quotation
Action

Error Return

CShfeFtdcTraderSpi:: OnErrRtnQuoteAction
Private
Stream

Declaration
Entry Error
Return

CShfeFtdcTraderSpi:: OnErrRtnExecOrderInsert
Private
Stream

Declaration
Action Error

Return
CShfeFtdcTraderSpi:: OnErrRtnExecOrderAction

Private
Stream

Abandon
Declaration
Return

CShfeFtdcTraderSpi:: OnRtnAbandonExecOrder
Private
Stream

Abandon
Declaration
Entry Error
Return

CShfeFtdcTraderSpi:: OnErrRtnAbandonExecOrderInsert
Private
Stream

Abandon
Declaration
Action Error

Return

CShfeFtdcTraderSpi:: OnErrRtnAbandonExecOrderAction
Private
Stream

Option Self-
Hedging

Update Return
CShfeFtdcTraderSpi:: OnRtnOptionSelfCloseUpdate

Private
Stream

Option Self-
Hedging

Update Error
Return

CShfeFtdcTraderSpi:: OnErrRtnOptionSelfCloseUpdate
Private
Stream

Trading API & Market Data API Interface Specifications v2.00

25

Service
Type

Service Request Interface / Response Interface
Data
Stream

Option Self-
Hedging

Action Error
Return

CShfeFtdcTraderSpi:: OnErrRtnOptionSelfCloseAction
Private
Stream

Public
Notification

Contract/Instru
ment Trading

Status
Notification

CShfeFtdcTraderSpi:: OnRtnInstrumentStatus
Public
Stream

Instrument
Addition

Notification
CShfeFtdcTraderSpi:: OnRtnInsInstrument

Public
Stream

Bulletin
Notification

CShfeFtdcTraderSpi:: OnRtnBulletin
Public
Stream

Query

Fund Query
CShfeFtdcTraderApi:: ReqQryPartAccount
CShfeFtdcTraderSpi:: OnRspQryPartAccount

Query
Stream

Order Query
CShfeFtdcTraderApi:: ReqQryOrder
CShfeFtdcTraderSpi:: OnRspQryOrder

Query
Stream

Price
Quotation
Query

CShfeFtdcTraderApi:: ReqQryQuote
CShfeFtdcTraderSpi:: OnRspQryQuote

Query
Stream

Trade Query
(i.e.filled/matc
hed order)

CShfeFtdcTraderApi:: ReqQryTrade
CShfeFtdcTraderSpi:: OnRspQryTrade

Query
Stream

Client Query
CShfeFtdcTraderApi:: ReqQryClient
CShfeFtdcTraderSpi:: OnRspQryClient

Query
Stream

Member
Holding

Position Query

CShfeFtdcTraderApi:: ReqQryPartPosition
CShfeFtdcTraderSpi:: OnRspQryPartPosition

Query
Stream

Client Holding
Position Query

CShfeFtdcTraderApi:: ReqQryClientPosition
CShfeFtdcTraderSpi:: OnRspQryClientPosition

Query
Stream

Instrument/Co
ntract Query

CShfeFtdcTraderApi:: ReqQryInstrument
CShfeFtdcTraderSpi:: OnRspQryInstrument

Query
Stream

Instrument/Co
ntract Trading
Status Query

CShfeFtdcTraderApi:: ReqQryInstrumentStatus
CShfeFtdcTraderSpi:: OnRspQryInstrumentStatus

Query
Stream

Hedge Quota
Query

CShfeFtdcTraderApi:: ReqQryHedgeVolume
CShfeFtdcTraderSpi:: OnRspQryHedgeVolume

Query
Stream

Market Data
Query

CShfeFtdcTraderApi:: ReqQryMarketData
CShfeFtdcTraderSpi:: OnRspQryMarketData

Query
Stream

Bulletin Query
CShfeFtdcTraderApi:: ReqQryBulletin
CShfeFtdcTraderSpi:: OnRspQryBulletin

Query
Stream

Order
Execution
Query

CShfeFtdcTraderApi:: ReqQryExecOrder
CShfeFtdcTraderSpi:: OnRspQryExecOrder

Query
Stream

Trading API & Market Data API Interface Specifications v2.00

26

Service
Type

Service Request Interface / Response Interface
Data
Stream

Exchange Rate
Query

CShfeFtdcTraderApi:: ReqQryExchangeRate
CShfeFtdcTraderSpi:: OnRspQryExchangeRate

Query
Stream

Abandon
Declaration
Query

CShfeFtdcTraderApi:: ReqQryAbandonExecOrder
CShfeFtdcTraderSpi:: OnRspQryAbandonExecOrder

Query
Stream

Option Self-
Hedging
Query

CShfeFtdcTraderApi:: ReqQryOptionSelfClose
CShfeFtdcTraderSpi:: OnRspQryOptionSelfClose

Query
Stream

Error
Response

Error
Response

CShfeFtdcTraderSpi:: OnRspError

Dialogue
Stream
Query
Stream

Trading API & Market Data API Interface Specifications v2.00

27

2. TraderAPI Interface Description

2.1. CShfeFtdcTraderSpiInterface

CShfeFtdcTraderSpi implements event notification interface. User has to derive the
CShfeFtdcTraderSpi interface, and writes event-handling methods to process the required
events.

2.1.1. OnFrontConnected Method

After the TCP virtual link path connection between Member System and the NGES
Trading System is established, the method is called. The mentioned connection is
automatically established by the API.

Function Prototype:
void OnFrontConnected();

Note: The fact that the OnFrontConnected is called only implies that the TCP connection
is successful; user must log in to the Member System by himself/herself to carry out any
business operations afterwards.

2.1.2. OnFrontDisconnected Method

After the TCP virtual link path connection between Member System and the NGES
Trading System is broken, the method is called. In this case, API would automatically
reconnect, and the automatically re-connected address may be the originally registered
address or other available communication addresses that are supported by the system, which
is decided by the application.
Function Prototype:

void OnFrontDisconnected(int nReason);

Parameters:
nReason: disconnection reasons
 0x1001 network reading failed
 0x1002 network writing failure
 0x2001 heartbeat receiving timeout
 0X2002 message encryption failed
 0X2003 message decryption failed
 0x2004 the message of an unsubscribed topic has been received
 0X2005 the received message serial number is discontinuous
 0x2006 the length of the message is illegal
 0x2007 message conversion error
 0X2008 login failure (front server)

2.1.3. OnHeartBeatWarning Method

Trading API & Market Data API Interface Specifications v2.00

28

This is for heartbeat timeout warning. This method will be called when no message is
received for an extended period of time. By default, the timeout warning is triggered after 5
seconds. If the method SetHeartbeatTimeout (unsigned int timeout) has been called to set a
custom heartbeat timeout, the warning will be triggered at half of the specified timeout (i.e.,
timeout / 2).
Function Prototype:

void OnHeartBeatWarning(int nTimeLapse);

Parameters:
nTimeLapse: time lapse from last time receiving the message (in seconds).

2.1.4. OnPackageStart Method

This is the method for notification of start of message/packets callback. When the API
receives a message, this method will be called if the message belongs to the public stream or a
private stream (either the member private stream or the trader private stream). After this
method will be called, callbacks for each data field are triggered, followed by a notification
indicating the end of the message callback process.
Function Prototype:

void OnPackageStart(int nTopicID, int nSequenceNo);

Parameters:
nTopicID: Topic ID (e.g. private stream, public stream)
nSequenceNo:Message Sequence Number

2.1.5. OnPackageEnd Method

This is the notification for end of message/packets callback. After the API receives a
message, if the message belongs to the public stream, the private stream (member private
stream, trader private stream) calls the message callback to start notification, then the callback
of each data field, and finally calls this method.
Function Prototype:

void OnPackageEnd(int nTopicID, int nSequenceNo);

Parameters:
nTopicID: Topic ID (e.g., private stream, public stream).
nSequenceNo:Message Sequence Number.

2.1.6. OnRspUserLogin Method

After Member System sends out a login request, and when the Trading System sends
back the response, the method is called to inform the Member System whether the login is
successful.
Function Prototype:

Trading API & Market Data API Interface Specifications v2.00

29

void OnRspUserLogin(
CShfeFtdcRspUserLoginField* pRspUserLogin,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspUserLogin: returns the address of user login information structure.
The structure:
struct CShfeFtdcRspUserLoginField {

///TradingDay
TShfeFtdcDateType TradingDay;
///Successful login time
TShfeFtdcTimeType LoginTime;
///Maximum order’s local ID
TShfeFtdcOrderLocalIDType MaxOrderLocalID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Name of Trading System
TShfeFtdcTradingSystemNameType TradingSystemName;
///Data Center ID
TShfeFtdcDataCenterIDType DataCenterID;
///Current size of member’s private stream
TShfeFtdcSequenceNoType PrivateFlowSize;
///Current size of private stream of trader/user
TShfeFtdcSequenceNoType UserFlowSize;
///action day
TShfeFtdcDateType ActionDay;

};
Note: When retrieving the date on which the business action occurred, use the ActionDay field; the same

applies to all similar cases below.

pRspInfo: returns the address of user response information. Error ID 0 means successful
operation; this is the same as below. Response information/message structure:

struct CShfeFtdcRspInfoField {
///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
3 Member not found Login failed due to an incorrect member ID
45 Settlement Group not properly

initialized
Trading System initialization incomplete, please try
again later

59 Same user logged in Same user logged in multiple times from different IP
addresses

60 Username or password incorrect Invalid username or password
62 User inactive The Trading System does not permit login for this user
64 User does not belong to this

member
The member ID of login is wrong

Trading API & Market Data API Interface Specifications v2.00

30

65 Invalid login IP address Login attempt from an IP address not authorized by the
Exchange

75 Front-End inactive Trading System Front-End Inactive
100 Invalid user type Non-Trading user attempting to log in
106 Duplicate session Multiple logins with the same session
135 User authentication failed User key verification failed
136 User does not have permission for

direct Front-End connection
User unauthorized for direct Front-End access

150 Proprietary member not
authenticated or authentication
failed before login

Proprietary member terminal information not
authenticated

nRequestID: returns the user login request ID; this ID is specified by the user upon
login.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.7. OnRspUserLogout Method

After Member System sends out logout request, the Trading System calls this method to
send back the response to inform the Member System whether logout is successful.
Function Prototype:

void OnRspUserLogout(
CShfeFtdcRspUserLogoutField* pRspUserLogout,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspUserLogout: returns the address of user logout information/message. User logout

information/message structure:
struct CShfeFtdcRspUserLogoutField {

///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;

};

pRspInfo: returns the address of user response information/message. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
66 User not logged in User not logged in
67 User not logged in with this

account
Logout Attempt by a different user than the one logged
in

68 Member Not Logged In with This Logout Attempt by a Different Member than the One

Trading API & Market Data API Interface Specifications v2.00

31

Account Logged In

nRequestID: returns the user logout request ID; this ID is specified by the user upon
logout.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.8. OnRspUserPasswordUpdate Method

This method is for the user password change reply. After Member System sends out
password update request, the Trading System calls it to send back the response.
Function Prototype:

void OnRspUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pUserPasswordUpdate: pointer to the user password update structure, including the

input data for user password update request. User password update structure:
struct CShfeFtdcUserPasswordUpdateField {

///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Old password
TShfeFtdcPasswordType OldPassword;
///New password
TShfeFtdcPasswordType NewPassword;

};

pRspInfo: pointer to the response information/message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
23 Settlement group data not

synchronized
Trading System not fully initialized. Please try again
later

58 User mismatch The user attempting to change the password is different
from the Logged-In user

60 Wrong username or Password Incorrect original password
62 User inactive User does not have permission to log in, trade, or

change Password
66 User not logged in Not logged In
68 Member not logged in with this

account
The member ID for password change does not match
the logged-in member

Trading API & Market Data API Interface Specifications v2.00

32

147 New password does not meet
requirements (Minimum 8
characters, must include numbers,
uppercase and lowercase letters)

New password does not meet the password policy
requirements

nRequestID: returns the user password modification request ID; this ID is specified by
the user upon password modification

bIsLast: indicates whether current return is the last return with respect to the
nRequestID

2.1.9. OnRspSubscribeTopic Method

This method is for the reply on topic/theme subscription. After Member System sends
out topic subscription request, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pDissemination: pointer to the subscription topic structure, including topic subscribed

and sequence number of starting message. The structure:
struct CShfeFtdcDisseminationField {

///Sequence series
TShfeFtdcSequenceSeriesTypeSequenceSeries;
///Sequence number
TShfeFtdcSequenceNoTypeSequenceNo;

};
pRspInfo: pointer to the response information/message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
1 Invalid session or topic does not

exist
The subscribed topic does not exist or the number of
subscriptions has exceeded the limit

nRequestID: returns the user subscribed topic request ID; this ID is specified by the user
upon subscription.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.10. OnRspQryTopic Method

This method is for the reply to the query of topic. This method will be called when the

Trading API & Market Data API Interface Specifications v2.00

33

Trading System returns a response after the Member System issues topic query instruction.
Function Prototype:

void OnRspQryTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pDissemination: pointer to the topic query structure, including the topic to be queried

and the number of messages in the topic. The structure:
struct CShfeFtdcDisseminationField {

///Sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;
///Sequence number
TShfeFtdcSequenceNoType SequenceNo;

};

pRspInfo: pointer to the response information structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors: None
nRequestID: returns the user topic query request ID; this ID is specified by the user

upon querying topics.
bIsLast: indicates whether current return is the last return with respect to the

nRequestID.

2.1.11. OnRspError Method

This method is for error notification with respect to user request.
Function Prototype:

void OnRspError(
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspInfo: returns the address of response information structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:

Trading API & Market Data API Interface Specifications v2.00

34

Error ID Error message Possible cause
1 Not Login Not logged in yet

Too High FTD Version Too high FTD version
Unrecognized ftd tid FTD Header Error

134 APIVerification failed User session authentication failed
151 Version check failed Trading API version verification failed
997 api authentication failure Unauthorized API access

api crypt info failure Failed to query API encryption Information
998 query frequency is too high Query Frequency Too High
999 the last query result is on way Pending Query Response Exists

nRequestID: returns the user operating request ID; this ID is specified by the user upon
sending request.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.12. OnRspOrderInsert Method

This method is for the reply to the order entry. After Member System sends out order
entry instruction, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspOrderInsert(
CShfeFtdcInputOrderField* pInputOrder,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pInputOrder: pointer to the order insert structure, including input data upon submitting

order insert as well as the order ID returned from the Trading System. The tructure:
struct CShfeFtdcInputOrderField {

///Order System ID*; this field is returned from the Trading System
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Trading user ID
TShfeFtdcUserIDType UserID;
///Contract ID/Instrument ID
TShfeFtdcInstrumentIDType InstrumentID;
///Order price type/condition
TShfeFtdcOrderPriceTypeType OrderPriceType;
///Buy/Sell direction
TShfeFtdcDirectionType Direction;
///Combination offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination speculation hedge flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TShfeFtdcPriceType LimitPrice;
///Quantity

Trading API & Market Data API Interface Specifications v2.00

35

TShfeFtdcVolumeType VolumeTotalOriginal;
///Validity period type
TShfeFtdcTimeConditionType TimeCondition;
///GTDDate, not used
TShfeFtdcDateType GTDDate;
///Match volume type
TShfeFtdcVolumeConditionType VolumeCondition;
///Minimum Volume
TShfeFtdcVolumeType MinVolume;
///Trigger condition
TShfeFtdcContingentConditionType ContingentCondition;
///Stop Price, not used
TShfeFtdcPriceType StopPrice;
///Force close reasons
TShfeFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TShfeFtdcOrderLocalIDType OrderLocalID;
///Automatic suspend flag
TShfeFtdcBoolType IsAutoSuspend;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IPAddress
TShfeFtdcIPAddressType IPAddress;
///MacAddress
TShfeFtdcMacAddressType MacAddress;

};
* OrderSysID: This is a sequential identifier generated by the Trading System for both regular orders and

quote-generated orders, managed under a unified numbering scheme. The value increases incrementally within the
Trading System. The SysIDs used for different business types are managed independently. For instance, the
OrderSysID for order placement and the QuoteSysID for quoting are assigned separately and are not correlated.

pRspInfo: pointer to the response information structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Unable to find instrument Unable to find the instrument in the order
3 Unable to find the Member Unable to find the Member in the order
4 Unable to find the client Unable to find the client in the order
6 Fields error in the order The order contains invalid field values (e.g., an out-of-

range enumerated value), or a forced liquidation reason
is specified for a non-forced-liquidation order when the
order quantity is not an integer multiple of the required
amount

12 Duplicated orders Local ID in the order is duplicated
15 Client has no account under the

exchange member
The client in the order has no account under the
specified member

16 IOC has to be with the continuous
trading session

IOC (immediately-or-cancel) order is tried to be entered
at non-continuous trading session

Trading API & Market Data API Interface Specifications v2.00

36

17 GFA has to be with the auction
session

GFA order is tried to be entered at non-auction session

19 Volume restriction should be with
IOC order

The order whose volume restriction is not arbitrary does
not have the IOC time condition

20 GTD order is expired The GTD date in the GTD order is expired
21 The minimum volume is greater

than the order volume
The order has minimum volume condition, but the order
volume is less than this minimum volume

22 Exchange data is not synchronized The Trading System is not completely initialized, try
later

23 Settlement group data is not
synchronized

Initialization of the Trading System is incomplete, try
later

26 This operation is forbidden under
current status

The trading status of the instrument is not continuous-
trading or auction or auction balance

31 Insufficient client position The client does not have enough position to place the
close order

32 Client’s position limit is exceeded When submitting an open position order, the client’s
general position limit for the specified contract is
exceeded

33 Member holding positions is not
enough when close position

The submitted close order exceeds the member’s
available position

34 Member’s position limit is
exceeded

When entering open position order, the member’s limit
position is exceeded

35 Unable to find account Unable to find the fund account used in the order
36 Fund not enough There is not enough fund in the fund account
37 Invalid quantity The order quantity is not a positive multiple of the

minimum order quantity or exceeds the maximum
48 Price is not an integer multiple of

the minimum unit
Order price is not an integer multiple of the minimum
variable price unit

49 Price exceeds limit up Order price exceed the upper limit of the contract
50 Price falls below limit down Order price lower than the lower limit of the instrument
51 No trading permission The member, client, or user does not have trading

permission for the specified contract
52 Close position only The member, client, or user is only authorized to close

positions for the specified contract
53 No such trading role Member, client or trader have no rights to trade

specified contract
54 Session not found User not logged in
57 Cannot operate for other members The user operates on a member not to whom he belongs
58 User not match The user in the quote does not match the user when

logging in
72 Natural persons are not allowed to

open positions
A client of the natural person type initiates a position
opening request in the delivery month

78 GTD date not set in the GTD order GTD order does not specify the GTD date
79 Order type not supported SHFE does not support this type of order
83 Stop loss order is only used for

continuous trading
Stop loss order is entered in non-continuous trading
session

84 Stop loss order has to be IOC/GFD Time condition is neither IOC nor GFD at stop loss
order

95 Stop loss order should specify stop
price

Stop loss order does not specify a stop price

96 Hedging amount not enough When entering hedging order, client hedge amount is
not enough

98 Forced-liquidation orders must be
submitted by administrator-level
users

The current user does not have the required permissions
to submit a forced-liquidation order

Trading API & Market Data API Interface Specifications v2.00

37

101 Clearing members are not
permitted to place orders

The submitting member is classified as a clearing
member and therefore cannot trade

102 Unable to locate the corresponding
clearing member

No clearing member is associated with the submitting
member

103 Hedging position unable to close
within the same day

Hedging position should not use close-today-position
order to close the position

114 Best price order unable to queue Best price order time condition is not IOC
131 The client’s open position for the

specified contract has exceeded the
daily open limit

The client’s number of order submissions for the
specified product has exceeded the per-second order
flow control

132 Exceeded the order limit per
second for client products

The number of orders submitted by clients on a certain
product within one second exceeds the limit

153 Market orders must use a time-in-
force condition of GFD or IOC

The market order time condition is not

154 Market orders can only be
submitted during the continuous
trading session

A market order was submitted outside the continuous
trading phase

155 Market orders are only supported
for futures and options contracts

A market order was submitted for a non-futures-or-
options contract

1005 No record No contract record found for the order

nRequestID: returns the user order insertion request; this ID is specified by the user
upon submitting the order.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID
Note:

CShfeFtdcRspInfoField.ErrorID is 0 implies that current order entry is successful. In
CShfeFtdcInputOrderField* pInputOrderonly order ID (the system ID given by the Trading
System) and local order ID are meaningful, which are used to relate the order between the
Trading System and Member System. The detailed content of the order should be obtained
from private stream.

Please refer to OnRtnOrder method for the description of each data field in
CShfeFtdcInputOrderField.

2.1.13. OnRspOrderAction Method

This method is used to response to order operations, which includes order cancellation,
order suspension, order activation and order modification. When Member System sent an
order for order operation and Trading System needs to return a response, this method will be
called.
Function Prototype:

void OnRspOrderAction(
CShfeFtdcOrderActionField* pOrderAction,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pOrderAction: pointer to the order operation structure, including the input data when an

order in submitted as well as the order number returned from the Trading System. Order

Trading API & Market Data API Interface Specifications v2.00

38

operation structure:
struct CShfeFtdcOrderActionField {

///Order number
TShfeFtdcOrderSysIDType OrderSysID;
///Local Order number
TShfeFtdcOrderLocalIDType OrderLocalID;
///Flag of Order operation
TShfeFtdcActionFlagType ActionFlag;
///Member’s ID
TShfeFtdcParticipantIDType ParticipantID;
///Client’s ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Price, not used
TShfeFtdcPriceType LimitPrice;
///Quantity change, not used
TShfeFtdcVolumeType VolumeChange;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID
///Business unit, not used
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP Address
TShfeFtdcIPAddressType IPAddress;
///Mac Address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot not be found Contract cannot be found in order operation
3 Member cannot not be found Member cannot be found in the order operation
4 Client cannot be found Client cannot be found in the order operation
8 Error field in the order operation Illegal field values in the order operation (out-of-range

of the enumerated value)
15 Client didn’t open an account at

this member
Client didn’t open an account at the designated member

16 IOC orders must be placed during
the continuous trading session

Attempted to operate an IOC order outside the
continuous trading session

17 GFA orders must be submitted
during the call auction session

Attempted to operate a GFA order outside the call
auction session

20 The GTD order has expired The GTD date specified in the GTD order has already
expired

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed, please
try later

Trading API & Market Data API Interface Specifications v2.00

39

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed, please
try later

24 Order cannot be found Order to be operated cannot be found
26 This operation is prohibited by

current state
As for activation of operation, the contract’s trading
status is not the continuous trade, call auction order or
call auction balancing
As for other operation, the trading status is not the
continuous trade or call auction order

28 The order has been fully filled Order has already been fulfilled
29 The order has been canceled Order has already been canceled
30 Insufficient quantity for

modification
After modifying the order quantity, the remaining order
quantity is less than zero

31 Insufficient client position The client does not have enough position to place the
close order

32 Exceeding client’s position limit The order cannot be activated because it exceeds the
client’s general position limit

33 The member does not hold a
sufficient position to close

The member has insufficient position to place the close
order

34 Exceeding member’s position limit The order cannot be activated because it exceeds the
member’s position limit

35 Account cannot be found The fund account shall be used cannot be found
36 Insufficient fund No sufficient funds in fund account
37 Invalid quantity The modified order quantity is either not a positive

integer multiple of the minimum order quantity, or it
falls outside the valid quantity range

48 The price is not the integral
multiple of the Min. unit

Price of order after modification is not the integral
multiple of the contract’s tick size

49 Price exceeds the upward limit Price of order after modification is higher than the
contract’s upward price limit

50 Price exceeds the downward limit Price of order after modification is lower than the
contract’s downward price limit

51 No trading permissions The specified contract, the client for the specified
contract, or the user does not have trading permission

52 Only closing positions is permitted The member, the client for the specified contract, or the
user only has permission to close positions

54 Session not found User not logged in
57 Cannot operate for other members The user is not authorized to operate on behalf of other

members
58 Unmatched user Trader in the order operation doesn’t match with trader

at the time of login
71 Operations on derivative orders are

not allowed
The user attempted to operate on a derivative order

72 Natural person clients are not
allowed to open positions

During the delivery month, natural person clients cannot
activate or modify opening orders

76 The order has been suspended The order has already been suspended when attempting
to suspend it

77 The order has been activated The order has already been activated when attempting to
activate it

79 Unsupported order type The exchange does not support this order type, for
instance: order modification

83 Stop-loss orders can only be used
during the continuous trading
session

Attempted to operate a stop-loss order outside the
continuous trading session

95 A stop-loss price must be specified
for the stop-loss order

The stop-loss order does not contain a specified stop-
loss price

Trading API & Market Data API Interface Specifications v2.00

40

96 Insufficient hedging quota After activation or modification, the client’s hedging
quota is insufficient

98 Forced liquidation orders must be
operated by an administrator

A non-administrator attempted to operate a forced
liquidation order

99 Operation shall not be conducted
by other users

Unauthorized trader operates order submitted by other
traders of the same member

131 The client’s open volume for the
contract exceeds the daily limit

The client’s open position in a specific contract has
exceeded the daily open position limit

133 The client has exceeded the per-
second order cancellation limit for
the product

The client’s number of order cancellations within one
second for a specific product exceeds the allowed limit

nRequestID: returns the user order operation request ID; this ID is specified by the user
upon order operating.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.14. OnRspQuoteInsert Method

This method is used to response to quote entry. When Member System gives the
instructions for entry of order and Trading System returns a response, this method will be
called.
Function Prototype:

void OnRspQuoteInsert(
CShfeFtdcInputQuoteField* pInputQuote,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pInputQuote: pointer to the input quote structure, including the input data of quote

entry operation and the quoto number returned from Trading System. The input quote
structure:

struct CShfeFtdcInputQuoteField {
///Quotation number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Quantity
TShfeFtdcVolumeType Volume;
///Contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
//Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;

Trading API & Market Data API Interface Specifications v2.00

41

///Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price
TShfeFtdcPriceType BidPrice;
///Seller’s combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
///Seller’s combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
///Seller’s price
TShfeFtdcPriceType AskPrice;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request number
TShfeFtdcOrderSysIDType QuoteDemandID;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract cannot be found in the quote
3 Member cannot be found Member cannot be found in the quote
4 Client cannot be found Client cannot be found in the quote
7 Error field in the quote Illegal field values in the quote (out-of-range of the

enumerated value)
13 Duplicate Quote Duplicate local quoto number in the quote
15 Client didn’t open an account at

this member
Client in the quote didn’t open an account at the
designated member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract’s trading status is not the continuous trade,
call auction order or call auction balancing

31 Insufficient client position The client does not have enough position to place the
close order

32 Exceeding client’s position limit The quote causes the client’s general position to exceed
the position limit

33 The member’s position is
insufficient at the time of closing-
out

The member does not have enough position

34 Exceeding member’s position limit This quote caused the member’s open interest exceeding
position limit

35 Account cannot be found The fund account used for quotation cannot be found
36 Inadequate fund No sufficient funds in fund account

Trading API & Market Data API Interface Specifications v2.00

42

37 Invalid quantity The quote quantity is not a positive multiple of the
minimum order quantity or exceeds the maximum

48 A multiple of a non-smallest unit of
price

The quoted price is not the integral multiple of the
contract’s tick size

49 Price exceeds the upward limit The quoted price is higher than the contract’s upward
price limit

50 Price exceeds the downward limit The quoted price is lower than the contract’s downward
price limit

51 Not authorized to trade Not authorized to trade in the designated contract, or
client or user is not authorized to trade in the designated
contract

52 Only closing positions is permitted The member, the client for the specified contract, or the
user only has permission to close positions

53 No such trading role On the designated contract, member doesn’t has the
trading role corresponding to such client

54 Session not found User not logged in
57 Operation shall not be conducted

by other members
User conducts operation on behalf of member to whom
he is not subordinate

58 Unmatched user User in the quote doesn’t match with user at the time of
login

72 Natural persons are not allowed to
open positions

A client of the natural person type initiates a position
opening request in the delivery month

79 Unsupported quote type The Exchange does not support this order type
96 Insufficient hedging quota When entering the quotation, the client’s hedging

amount is insufficient
98 Forced liquidation orders must be

submitted by an administrator
A non-administrator user attempted to place a forced
liquidation order

101 Clearing members cannot make
transactions

The quoting member is of clearing member type

102 Failed to locate the corresponding
clearing member

No clearing member associated with the quoting
member could be found

103 Today’s hedging positions cannot
be closed

Hedging positions should not be closed using the
current position quotation

131 The client’s opening volume for
the contract exceeds the daily limit

The client’s open position in a specific contract exceeds
the allowed limit

132 The client’s order submission rate
for the product exceeds the per-
second limit

The number of orders submitted by the client for a
product within one second exceeds the limit

1005 No record found Contract record corresponding to quote is missing

nRequestID: returns the user quote entry operation request; this ID is specified by the
user upon quote entry.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.15. OnRspQuoteAction Method

This function is used to response to quote operation, including cancellation of quote,
suspension of quote, activation of quote and modification to quote. When Member System
gives the instructions for quote operation and Trading System returns a response, this method
will be called.
Function Prototype:

void OnRspQuoteAction(
CShfeFtdcQuoteActionField* pQuoteAction,

Trading API & Market Data API Interface Specifications v2.00

43

CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pQuoteAction: pointer to the quote operation structure, including the input data of

request for quote operation and quoto number returned from Trading System. Quote operation
structure:

struct CShfeFtdcQuoteActionField {
///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Local quoto number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local number of operation
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP Address
TShfeFtdcIPAddressType IPAddress;
///Mac Address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract specified in the quote operation cannot be

found
3 Member cannot be found Member specified in the quote operation cannot be

found
4 Client cannot be found Client specified in the quote operation cannot be found
8 Error field in the quote operation The derived order from the quote operation contains

invalid field values (e.g., price is not a floating-point
number or is outside the valid range)

9 Error field in the quote operation The quote operation contains invalid field values (e.g.,
out-of-range enumeration values or unsupported

Trading API & Market Data API Interface Specifications v2.00

44

operation flags such as modify, activate, or suspend)
15 Client didn’t open an account at

this member
Client didn’t open an account at the designated member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed, please
try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed, please
try later

25 Quote cannot be found Quote to be operated cannot be found
26 This operation is prohibited by

current state
As for activation of operation, the contract’s trading
status is not the continuous trade, call auction order or
call auction balancing
As for other operations, the trading status is not the
continuous trade or call auction order

28 Order has been fully filled Order derived from quote has already been fulfilled
29 The order has been canceled Order derived from the quote has already been canceled
35 Account cannot be found The fund account shall be used cannot be found
36 Insufficient fund No sufficient funds in fund account
51 No trading permission No trading permission for the specified contract, client,

or user
54 Session not found User not logged in
57 Operation on behalf of another

member is not allowed
User attempted to operate on a member they do not
belong to

58 Unmatched user The user in the quote operation does not match the user
at login

70 Quote has already been canceled Quote has already been canceled
99 Operation on behalf of another user

is not permitted
Unauthorized user attempted to operate on a quote
submitted by another user under the same member

nRequestID: returns the user quote operation request ID; this ID is specified by the user
upon quote operation.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.16. OnRspExecOrderInsert Method

This method is used to response to option exercise entry. When Member System
executed the entry of declaration and Trading System returned a response, this method will be
called.
Function Prototype:

void OnRspExecOrderInsert(
CShfeFtdcInputExecOrderField* pInputExecOrder,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pInputExecOrder: pointer to the declaration entry structure. The structure of option

exercise entry:
struct CShfeFtdcInputExecOrderField {

///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;

Trading API & Market Data API Interface Specifications v2.00

45

///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local option exercise number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Quantity
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
///position direction, i.e. whether buyer(long position) or seller (short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
///flag for whether position is reserved after option exercrised, not used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///flag for whether position is closed automatically after option exercrised
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP Address
TShfeFtdcIPAddressType IPAddress;
///Mac Address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract cannot be found in the option exercise
3 Member cannot be found Member cannot be found in the option exercise
4 Client cannot be found Client cannot be found in the option exercise
15 Client didn’t open an account at

this member
Client in the option exercise didn’t open an account at
the designated member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract is not in continuous trading or business
processing status

31 Insufficient client positions at
closing

The client has insufficient position quota for execution
of declaration submission

33 Insufficient member positions at
closing

The member has insufficient position quota for
execution of declaration submission

35 Account cannot be found The required fund account

Trading API & Market Data API Interface Specifications v2.00

46

36 Insufficient funding No trading permission for the specified contract, client,
or user found

37 Invalid quantity Invalid quantity in option exercise
51 No trading permission No trading permission for the specified contract, client,

or user
54 Session not found User not logged in
57 Operation on behalf of another

member is not allowed
The user conducts operation on behalf of member to
whom he is not subordinate

58 Unmatched user User in the option exercise does not match user at the
time of login

79 Unsupported order type This order type is not supported by the exchange
89 Error field in the execution of

declaration operation
Illegal field values in the execution of declaration
operation (out-of-range of the enumerated value)

91 Duplicate option exercise The local announcement execution number in option
exercise is not unique

94 Option exercise is only used in
option

The contract in option exercise is non-option contract

101 Clearing members cannot make
transactions

The member in the execution of declaration is a clearing
member

102 Corresponding clearing member
not found

No clearing member associated with the execution of
declaration member could be found

127 Not within the declaration period Not within the contract’s delivery period (exercise
window)

129 Execution of declarations must not
use the open position flag

The offset flag in the execution of declaration must
indicate closing

146 Only holders of long positions are
allowed to exercise

Only option buyers are allowed to exercise

1005 No record The contract record referenced in the execution of
declaration is missing

nRequestID: returns the user option exercise entry request ID; this ID is specified by the
user upon option exercise entry.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.17. OnRspExecOrderAction Method

Response to execution of announcement operation. Execution of declaration operations
include cancellation, suspension, activation, and modification of execution of declarations.
When Member System executes the declaration operation and Trading System returns a
response, this method will be called.
Function Prototype:

void OnRspExecOrderAction(
CShfeFtdcExecOrderActionField* pExecOrderAction,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pExecOrderAction: pointer to the option exercise operation structure. The structure:
struct CShfeFtdcExecOrderActionField {

///Option exercise number
TShfeFtdcExecOrderSysIDType ExecOrderSysID;

Trading API & Market Data API Interface Specifications v2.00

47

///Local execution announcement number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Order operation flag
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP Address
TShfeFtdcIPAddressType IPAddress;
///Mac Address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract cannot be found in the option exercise
3 Member cannot be found Member cannot be found in the option exercise
4 Client cannot be found Client cannot be found in the option exercise
15 The client has not opened an

account with this member
Client in the in the option exercise didn’t open an
account at the designated member

22 Exchange data is not synchronized Initialization of Trading System is not completed, please
try later

23 Settlement group data is not
synchronized

Initialization of Trading System is not completed, please
try later

26 This operation is prohibited by
current state

The contract is not in continuous trading or business
processing status

35 Account not found The required fund account cannot be found
36 Insufficient funds Insufficient funds in the fund account
51 No trading permission No trading permission for the specified contract, the

client under the contract, or the user
54 Session not found User not logged in
57 Operation on behalf of another

member is not allowed
The user conducts operation on behalf of member to
whom he is not subordinate

58 User mismatch The user in the execution announcement operation does
not match the user at login

89 Field error in the execution of
declaration

The execution of declaration contains invalid field
values

90 Field error in the execution of Illegal field values in the execution of declaration

Trading API & Market Data API Interface Specifications v2.00

48

declaration operation operation (out-of-range of the enumerated value)
92 The execution of declaration has

been canceled
The declaration operation to be executed has been
canceled

93 Execution of declaration cannot be
found

The option exercise to be operated can not be found

127 Not within the declaration period Not within the contract delivery period (exercise
window)

1005 No record The contract record corresponding to the declaration
operation is missing

nRequestID: returns the user declaration operation execution request ID; this ID is
specified by the user upon execution of declaration operation.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.18. OnRspQryPartAccount Method

This method is the response to query for member’ funds. When Member System gives
the instructions to query for member’s funds and Trading System returns a response, this
method will be called.
Function Prototype:

void OnRspQryPartAccount(
CShfeFtdcRspPartAccountField* pRspPartAccount,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspPartAccount: pointer to the structure of response to member’s funds. The structure:
Structure CShfeFtdcRspPartAccountField {

///Trading day
TShfeFtdcDateType TradingDay;
///Settlement group ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Last settlement reserve
TShfeFtdcMoneyType PreBalance;
///Total current margin
TShfeFtdcMoneyType CurrMargin;
///Profit & loss on closing-out of position
TShfeFtdcMoneyType CloseProfit;
///Option premium income and expenditure
TShfeFtdcMoneyType Premium;
///Deposit Amount
TShfeFtdcMoneyType Deposit;
///Withdrawal amount
TShfeFtdcMoneyType Withdraw;
///Reserve funds for futures settlement
TShfeFtdcMoneyType Balance;
///Withdrawable funds
TShfeFtdcMoneyType Available;
///Fund account

Trading API & Market Data API Interface Specifications v2.00

49

TShfeFtdcAccountIDType AccountID;
///Frozen margin
TShfeFtdcMoneyType FrozenMargin;
///Frozen premium
TShfeFtdcMoneyType FrozenPremium;
///Basic reserve funds
TShfeFtdcMoneyType BaseReserve;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session not found User not logged in
57 Operation on behalf of another

member is not allowed
Querying data under other members is not permitted

80 User does not have this permission Only trading users are authorized to perform queries
Queries are limited to a single member account

nRequestID: returns the user request ID for user’s query for funds; this ID is specified
by the user upon sending query instruction.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.19. OnRspQryOrder Method

This method is for order query request. After Member System sends out order query
instruction and while the Trading System sends back the response, this method will be called.
Function Prototype:

void OnRspQryOrder(
CShfeFtdcOrderField* pOrder,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pOrder: pointer to the order information/message structure. The structure:
struct CshfeFtdcOrderField {

///Business day
TshfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Order ID
TShfeFtdcOrderSysIDType OrderSysID;

Trading API & Market Data API Interface Specifications v2.00

50

///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Order Price Type
TShfeFtdcOrderPriceTypeType OrderPriceType;
///buy-sell direction
TShfeFtdcDirectionType Direction;
///Combination offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination Hedge Flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TShfeFtdcPriceType LimitPrice;
///Volume
TShfeFtdcVolumeType VolumeTotalOriginal;
///Expiry Type
TShfeFtdcTimeConditionType TimeCondition;
///GTD Date, NOT USED
TShfeFtdcDateType GTDDate;
///Match volume condition type
TShfeFtdcVolumeConditionType VolumeCondition;
///Minimum Volume
TShfeFtdcVolumeType MinVolume;
///Trigger/Contingent Condition
TShfeFtdcContingentConditionType ContingentCondition;
///Stop loss Price, NOT USED
TShfeFtdcPriceType StopPrice;
///Forced close reasons
TShfeFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TShfeFtdcOrderLocalIDType OrderLocalID;
///Auto Suspend flag
TShfeFtdcBoolType IsAutoSuspend;
///Order Source
TShfeFtdcOrderSourceType OrderSource;
///Order Status
TShfeFtdcOrderStatusType OrderStatus;
///Order Type
TShfeFtdcOrderTypeType OrderType;
///Today’s trade volume
TShfeFtdcVolumeType VolumeTraded;
///Remaining volume
TShfeFtdcVolumeType VolumeTotal;
///order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///Activation time
TShfeFtdcTimeType ActiveTime;

Trading API & Market Data API Interface Specifications v2.00

51

///Suspension time
TShfeFtdcTimeType SuspendTime;
///Last amendment time
TShfeFtdcTimeType UpdateTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Last modified trading user ID
TShfeFtdcUserIDType ActiveUserID;
///Priority
TShfeFtdcPriorityType Priority;
///Sequence number by time order
TShfeFtdcTimeSortIDType TimeSortID;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Action day
TShfeFtdcDateType ActionDay;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the user request ID for order query; this ID is specified by the user
upon sending query instruction.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.20. OnRspQryQuote Method

This function is the response to query for quote. When Member System gives the
instructions to query for quote and Trading System returns a response, this method will be
called.
Function Prototype:

void OnRspQryQuote(

Trading API & Market Data API Interface Specifications v2.00

52

CShfeFtdcQuoteField* pQuote,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pQuote: pointer to the quote message structure. The structure:
struct CShfeFtdcQuoteField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Volume
TShfeFtdcVolumeType Volume;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
///Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price
TShfeFtdcPriceType BidPrice;
///Seller’s combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
///Seller’s combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
///Seller’s price
TShfeFtdcPriceType AskPrice;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Transaction time
TShfeFtdcTimeType TradeTime;
///Buyer’s order number
TShfeFtdcOrderSysIDType BidOrderSysID;
///Seller’s order number
TShfeFtdcOrderSysIDType AskOrderSysID;
///Settlement member’s number

Trading API & Market Data API Interface Specifications v2.00

53

TShfeFtdcParticipantIDType ClearingPartID;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Action day
TShfeFtdcDateType ActionDay;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the user request ID for quote request; this ID is specified by the
user upon query for quote.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.21. OnRspQryTrade Method

This method is for the reply on matched order/ trade query. After Member System sends
out matched order (i.e. trade) query instruction and while the Trading System sends back the
response, this method will be called.
Function Prototype:

void OnRspQryTrade(
CShfeFtdcTradeField* pTrade,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pTrade: pointer to the matched order information structure. The structure:
struct CShfeFtdcTradeField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;

Trading API & Market Data API Interface Specifications v2.00

54

///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Matched order ID
TShfeFtdcTradeIDType TradeID;
///buy-sell direction
TShfeFtdcDirectionType Direction;
///Order ID
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Trading Role
TShfeFtdcTradingRoleType TradingRole;
///Fund account
TShfeFtdcAccountIDType AccountID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Price
TShfeFtdcPriceType Price;
///Volume
TShfeFtdcVolumeType Volume;
///Transaction time
TShfeFtdcTimeType TradeTime;
///Trade Type / order matching type
TShfeFtdcTradeTypeType TradeType;
///Trade Price Source / Order Matching Price Source
TShfeFtdcPriceSourceType PriceSource;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local order ID
TShfeFtdcOrderLocalIDType OrderLocalID;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Action day
TShfeFtdcDateType ActionDay;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:

Trading API & Market Data API Interface Specifications v2.00

55

Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the user request ID for matched order query; this ID is specified by
the user upon sending fund query instruction.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.22. OnRspQryClient Method

This method is for the reply on member client query. After Member System sends out
client query instruction and while the Trading System sends back the response, this method
will be called.
Function Prototype:

void OnRspQryClient(
CShfeFtdcRspClientField* pRspClient,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspClient: pointer to the client information/message structure. The structure:
struct CShfeFtdcRspClientField {

///Client ID
TShfeFtdcClientIDType ClientID;
///Client name
TshfeFtdcPartyNameType ClientName;
///ID Type
TShfeFtdcIdCardTypeType IdentifiedCardType;
///Original ID
TShfeFtdcIdentifiedCardNoV1Type UseLess;
///Trading Role
TShfeFtdcTradingRoleType TradingRole;
///Client type
TShfeFtdcClientTypeType ClientType;
///Active or not flag
TShfeFtdcBoolType IsActive;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///ID Number
TShfeFtdcIdentifiedCardNoType IdentifiedCardNo;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message

Trading API & Market Data API Interface Specifications v2.00

56

TShfeFtdcErrorMsgType ErrorMsg;
};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the request ID of the member-client query; this ID is specified by
the user upon performing the member-client query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.23. OnRspQryPartPosition Method

This method is for the reply on member holding position query. After Member System
sends out member holding position query instruction and while the Trading System sends
back the response, this method will be called.
Function Prototype:

void OnRspQryPartPosition(
CShfeFtdcRspPartPositionField* pRspPartPosition,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspPartPosition: pointer to the member holding position response

information/message structure. The structure:
struct CShfeFtdcRspPartPositionField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Holding position over-under direction
TShfeFtdcPosiDirectionType PosiDirection;
///Previous day holding position
TShfeFtdcVolumeType YdPosition;
///Current day holding position
TShfeFtdcVolumeType Position;
///Long frozen
TShfeFtdcVolumeType LongFrozen;
///Short frozen
TShfeFtdcVolumeType ShortFrozen;
///Previous day long frozen
TShfeFtdcVolumeType YdLongFrozen;
///Previous day short frozen
TShfeFtdcVolumeType YdShortFrozen;

Trading API & Market Data API Interface Specifications v2.00

57

///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Trading Role
TShfeFtdcTradingRoleType TradingRole;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

nRequestID: returns the request ID of the member position query; this ID is specified by
the user upon performing the member position query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.24. OnRspQryClientPosition Method

This method is for the reply on client holding position query. After Member System
sends out client holding position query instruction and while the Trading System sends back
the response, this method will be called.
Function Prototype:

void OnRspQryClientPosition(
CShfeFtdcRspClientPositionField* pRspClientPosition,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspClientPosition: pointer to the member holding position response

information/message structure. The structure:
struct CShfeFtdcRspClientPositionField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;

Trading API & Market Data API Interface Specifications v2.00

58

///Holding position over-under direction
TShfeFtdcPosiDirectionType PosiDirection;
///Previous day holding position
TShfeFtdcVolumeType YdPosition;
///Current day holding position
TShfeFtdcVolumeType Position;
///Long frozen
TShfeFtdcVolumeType LongFrozen;
///Short frozen
TShfeFtdcVolumeType ShortFrozen;
///Previous day long frozen
TShfeFtdcVolumeType YdLongFrozen;
///Previous day short frozen
TShfeFtdcVolumeType YdShortFrozen;
///Buying volume on that day
TShfeFtdcVolumeType BuyTradeVolume;
///Selling volume on that day
TShfeFtdcVolumeType SellTradeVolume;
///Cost of carry
TShfeFtdcMoneyType PositionCost;
///Yesterday’s cost of carry
TShfeFtdcMoneyType YdPositionCost;
///Margin used
TShfeFtdcMoneyType UseMargin;
///Frozen margin
TShfeFtdcMoneyType FrozenMargin;
///Margin frozen by the long
TShfeFtdcMoneyType LongFrozenMargin;
///Margin frozen by the short
TShfeFtdcMoneyType ShortFrozenMargin;
///Frozen premium
TShfeFtdcMoneyType FrozenPremium;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query; the
query can only be performed for a single member

Trading API & Market Data API Interface Specifications v2.00

59

nRequestID: returns the request ID of the member position query; this ID is specified by
the user upon performing the client position query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.25. OnRspQryInstrument Method

This method is for the reply on contract query. After Member System sends out contract
query instruction and while the Trading System sends back the response, this method will be
called.
Function Prototype:

void OnRspQryInstrument(
CShfeFtdcRspInstrumentField* pRspInstrument,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspInstrument: pointer to the contract structure. The structure:
struct CShfeFtdcRspInstrumentField {

///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Product ID
TShfeFtdcProductIDType ProductID;
///Product suite’s ID
TShfeFtdcProductGroupIDType ProductGroupID;
///Basic commodity ID
TShfeFtdcInstrumentIDType UnderlyingInstrID;
///Product type
TShfeFtdcProductClassType ProductClass;
///Type of open interest
TShfeFtdcPositionTypeType PositionType;
///Strike price
TShfeFtdcPriceType StrikePrice;
///Option type
TShfeFtdcOptionsTypeType OptionsType;
///Contract multiplier
TShfeFtdcVolumeMultipleType VolumeMultiple;
///Contract multiplier for basic commodity
TShfeFtdcUnderlyingMultipleType UnderlyingMultipl
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Contract name
TShfeFtdcInstrumentNameType InstrumentName;
///Delivery year
TShfeFtdcYearType DeliveryYear;
///Delivery month
TShfeFtdcMonthType DeliveryMonth;
///Month in advance
TShfeFtdcAdvanceMonthType AdvanceMonth;
///Is trading right now?
TShfeFtdcBoolType IsTrading;

Trading API & Market Data API Interface Specifications v2.00

60

///Creation date
TShfeFtdcDateType CreateDate;
///Listing day
TShfeFtdcDateType OpenDate;
///Expiring date
TShfeFtdcDateType ExpireDate;
///Date of starting delivery
TShfeFtdcDateType StartDelivDate;
///The last delivery day
TShfeFtdcDateType EndDelivDate;
///Benchmark price for listing
TShfeFtdcPriceType BasisPrice;
///The Max. market order placement volume
TShfeFtdcVolumeType MaxMarketOrderVolume;
///Minimum Order Quantity for Market Orders
TShfeFtdcVolumeType MinMarketOrderVolume;
///The Max. limit order placemnt volume
TShfeFtdcVolumeType MaxLimitOrderVolume;
///The Min. limit order placement volume
TShfeFtdcVolumeType MinLimitOrderVolume;
///Minimum Price Fluctuation
TShfeFtdcPriceType PriceTick;
///Position opened by natural person during delvery month
TShfeFtdcMonthCountType AllowDelivPersonOpen;
///Currency ID
TShfeFtdcCurrencyIDType CurrencyID;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the contract query request ID; this ID is specified by the user upon
performing the contract query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.26. OnRspQryInstrumentStatus Method

This method is for the reply on contract trading status query. After Member System
sends out contract trading status query instruction and while the Trading System sends back
the response, this method will be called.
Function Prototype:

void OnRspQryInstrumentStatus(
CShfeFtdcInstrumentStatusField* pInstrumentStatus,

Trading API & Market Data API Interface Specifications v2.00

61

CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pInstrumentStatus: pointer to the contract trading status structure. The structure:
struct CshfeFtdcInstrumentStatusField {

///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Contract/Instrument Trading Status
TShfeFtdcInstrumentStatusType InstrumentStatus;
///Trading Phase/Stage/Segment ID
TShfeFtdcTradingSegmentSNType TradingSegmentSN;
///Time of entering current status
TShfeFtdcTimeType EnterTime;
///Reason for entering current status
TShfeFtdcInstStatusEnterReasonType EnterReason;
///Entry Date of Current Status
TShfeFtdcDateType EnterDate;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the request ID of the contract trading status query; this ID is
specified by the user upon performing the contract trading status query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.27. OnRspQryBulletin Method

This method is for the reply on the Exchange bulletin/public announcement query. After
Member System sends out the query instruction for the Exchange bulletin/public
announcement and while the Trading System sends back the response, this method will be
called.
Function Prototype:

void OnRspQryBulletin(
CShfeFtdcBulletinField* pBulletin,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Trading API & Market Data API Interface Specifications v2.00

62

Parameters:
pBulletin: pointer to the Exchange bulletin/public announcement structure. The structure:
struct CShfeFtdcBulletinField {

///Business day
TShfeFtdcDateType TradingDay;
///Bulletin number
TShfeFtdcBulletinIDType BulletinID;
///Sequence number
TShfeFtdcSequenceNoType SequenceNo;
///Bulletin type
TShfeFtdcNewsTypeType NewsType;
///Urgency
TShfeFtdcNewsUrgencyType NewsUrgency;
///Transmission time
TShfeFtdcTimeType SendTime;
///Message digest
TShfeFtdcAbstractType Abstract;
///Source of message
TShfeFtdcComeFromType ComeFrom;
///Message body
TShfeFtdcContentType Content;
///WEB address
TShfeFtdcURLLinkType URLLink;
///Market ID
TShfeFtdcMarketIDType MarketID;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the request ID of the exchange bulletin query; this ID is specified
by the user upon performing the exchange bulletin query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.28. OnRspQryMarketData Method

This method is for the reply on general market data query. After Member System sends
out the query instruction for market data and while the Trading System sends back the
response, this method will be called.
Function Prototype:

void OnRspQryMarketData(

Trading API & Market Data API Interface Specifications v2.00

63

CShfeFtdcMarketDataField* pMarketData,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pMarketData: pointer to the market data structure. The structure:
struct CShfeFtdcMarketDataField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///The latest price
TShfeFtdcPriceType LastPrice;
///Settlement of yesterday
TShfeFtdcPriceType PreSettlementPrice;
///Close of yesterday
TShfeFtdcPriceType PreClosePrice;
///Yesterday’s open interest
TShfeFtdcLargeVolumeType PreOpenInterest;
///Today’s open price
TShfeFtdcPriceType OpenPrice;
///The highest price
TShfeFtdcPriceType HighestPrice;
///The lowest price
TShfeFtdcPriceType LowestPrice;
///Volume
TShfeFtdcVolumeType Volume;
///Turnover
TShfeFtdcMoneyType Turnover;
///Open Interest
TShfeFtdcLargeVolumeType OpenInterest;
///Today’s closing
TShfeFtdcPriceType ClosePrice;
///Today’s settlement
TShfeFtdcPriceType SettlementPrice;
///Upward limit price
TShfeFtdcPriceType UpperLimitPrice;
///Downward limit price
TShfeFtdcPriceType LowerLimitPrice;
///Yesterday’s delta value
TShfeFtdcRatioType PreDelta;
///Today’s delta value
TShfeFtdcRatioType CurrDelta;
///Last amendment time
TShfeFtdcTimeType UpdateTime;
///The last modified millisecond
TShfeFtdcMillisecType UpdateMillisec;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Action day

Trading API & Market Data API Interface Specifications v2.00

64

TShfeFtdcDateType ActionDay;
};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the request ID of the standard market data query; this ID is
specified by the user upon performing the standard market data query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.29. OnRspQryHedgeVolume Method

Hedging quota response. This method will be called when the Trading System returns a
response after the Member System executes a hedging quota query.
Function Prototype:

void OnRspQryHedgeVolume(
CShfeFtdcHedgeVolumeField* pHedgeVolume,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pHedgeVolume: points to the hedging quota volume structure. The structure:
struct CShfeFtdcHedgeVolumeField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Initial applied quantity for long hedging quota, in lots.
TShfeFtdcVolumeType LongVolumeOriginal;
///Initial applied quantity for short hedging quota, in lots.
TShfeFtdcVolumeType ShortVolumeOriginal;
///Long hedging quota, in lots.
TShfeFtdcVolumeType LongVolume;

Trading API & Market Data API Interface Specifications v2.00

65

///Short hedging quota, in lots.
TShfeFtdcVolumeType ShortVolume;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query;
the query can only be performed for a single member.
When the exchange enables cross-member joint
hedging, only the administrator can perform this
operation

nRequestID: returns the request ID of the hedge quota execution query; this ID is
specified by the user upon performing the hedging quota execution query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.30. OnRtnTrade Method

Trade return. When a trade is executed, the Trading System will notify corresponding
member systems, and this method will be called.
Function Prototype:

void OnRtnTrade(CShfeFtdcTradeField* pTrade);

Parameters:
pTrade: pointer to the trade return structure. Note: some fields in the trade return are not

used, and the Trading System returns null for those unused fields. The structure:
struct CShfeFtdcTradeField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Matched order ID
TShfeFtdcTradeIDType TradeID;
///buy-sell direction
TShfeFtdcDirectionType Direction;
///Order ID
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;

Trading API & Market Data API Interface Specifications v2.00

66

///Client ID
TShfeFtdcClientIDType ClientID;
///Trading role, not used
TShfeFtdcTradingRoleType TradingRole;
///Fund account, not used
TShfeFtdcAccountIDType AccountID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Price
TShfeFtdcPriceType Price;
///Volume
TShfeFtdcVolumeType Volume;
///Transaction time
TShfeFtdcTimeType TradeTime;
///Trade Type / order matching type
TShfeFtdcTradeTypeType TradeType;
///Source of transaction price, not used
TShfeFtdcPriceSourceType PriceSource;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local order ID
TShfeFtdcOrderLocalIDType OrderLocalID;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit, NOT USED
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Action day
TShfeFtdcDateType ActionDay;

};

2.1.31. OnRtnOrder Method

Order return. When an order is inserted, executed or for other reasons (i.e. partial match)
so that the order status changes, the Trading System will automatically inform Member
System, and this method will be called.
Function Prototype:

void OnRtnOrder(CShfeFtdcOrderField* pOrder);

Parameters:
pOrder: pointer to the order return structure. Note: some fields in the order return is not

used, the Trading System will return a null value for those used fields. The structure:
struct CShfeFtdcOrderField {

///Business day, not used
TShfeFtdcDateType TradingDay;

Trading API & Market Data API Interface Specifications v2.00

67

///Settlement group’s ID, not used
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number, not used
TShfeFtdcSettlementIDType SettlementID;
///Order ID
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Order Price Type
TShfeFtdcOrderPriceTypeType OrderPriceType;
///buy-sell direction
TShfeFtdcDirectionType Direction;
///Combination offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination Hedge Flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TShfeFtdcPriceType LimitPrice;
///Volume
TShfeFtdcVolumeType VolumeTotalOriginal;
///Expiry Type
TShfeFtdcTimeConditionType TimeCondition;
///GTD DATE
TShfeFtdcDateType GTDDate;
///Match volume condition type
TShfeFtdcVolumeConditionType VolumeCondition;
///Minimum Volume
TShfeFtdcVolumeType MinVolume;
///Trigger/Contingent Condition
TShfeFtdcContingentConditionType ContingentCondition;
///Stop-loss price
TShfeFtdcPriceType StopPrice;
///Forced close reasons
TShfeFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TShfeFtdcOrderLocalIDType OrderLocalID;
///Auto Suspend flag
TShfeFtdcBoolType IsAutoSuspend;
///Source of order, not used
TShfeFtdcOrderSourceType OrderSource;
///Order Status
TShfeFtdcOrderStatusType OrderStatus;
///Order Type
TShfeFtdcOrderTypeType OrderType;
///Volume on that day, not used
TShfeFtdcVolumeType VolumeTraded;
///Remaining volume
TShfeFtdcVolumeType VolumeTotal;

Trading API & Market Data API Interface Specifications v2.00

68

///order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///activation time, NOT USED
TShfeFtdcTimeType ActiveTime;
///Suspension time, NOT USED
TShfeFtdcTimeType SuspendTime;
///Last amendment time
TShfeFtdcTimeType UpdateTime;
///Time of cancelation, not used
TShfeFtdcTimeType CancelTime;
///Last modified trading user ID
TShfeFtdcUserIDType ActiveUserID;
///Priority, NOT USED
TShfeFtdcPriorityType Priority;
///Sequence number by time order, NOT USED
TShfeFtdcTimeSortIDType TimeSortID;
///Settlement member ID, NOT USED
TShfeFtdcParticipantIDType ClearingPartID;
///Business unit, NOT USED
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Action day
TShfeFtdcDateType ActionDay;
///IP Address, not used
TShfeFtdcIPAddressType IPAddress;
///MAC Address, not used
TShfeFtdcMacAddressType MacAddress;

};

2.1.32. OnRtnQuote Method

Quote return. When an order is inserted or executed so that the price quote changes, the
Trading System will automatically inform Member System, and this method will be called.
Function Prototype:

void OnRtnQuote(CShfeFtdcQuoteField* pQuote);

Parameters:
pQuote: pointer to the price quote return structure. The structure:
struct CShfeFtdcQuoteField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID

Trading API & Market Data API Interface Specifications v2.00

69

TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Volume
TShfeFtdcVolumeType Volume;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
///Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price
TShfeFtdcPriceType BidPrice;
///Seller’s combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
///Seller’s combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
///Seller’s price
TShfeFtdcPriceType AskPrice;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Transaction time
TShfeFtdcTimeType TradeTime;
///Buyer’s order number
TShfeFtdcOrderSysIDType BidOrderSysID;
///Seller’s order number
TShfeFtdcOrderSysIDType AskOrderSysID;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Action day
TShfeFtdcDateType ActionDay;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

};

2.1.33. OnRtnExecOrder Method

Order exercise return. This method will be called when the Member System performs an
option exercise entry or option exercise operation resulting in a change of option exercise

Trading API & Market Data API Interface Specifications v2.00

70

status, and the Trading System will proactively notify the Member System.
Function Prototype:

void OnRtnExecOrder(CShfeFtdcExecOrderField* pExecOrder);

Parameters:
pExecOrder: pointer to the order execution return structure. The structure:
struct CShfeFtdcExecOrderField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local annoncement execution number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Position direction, i.e. whether buyer(long position) or seller(short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
///Flag indicating whether to retain futures positions after option exercise, not
used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Option exercise number
TShfeFtdcExecOrderSysIDType ExecOrderSysID;
///Order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Execution result
TShfeFtdcExecResultType ExecResult;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;

Trading API & Market Data API Interface Specifications v2.00

71

///Action day
TShfeFtdcDateType ActionDay;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

2.1.34. OnRtnInstrumentStatus Method

Contract return. When the contract status changes, the Trading System will automatically
inform Member System, and this method will be called.
Function Prototype:

void OnRtnInstrumentStatus(
CShfeFtdcInstrumentStatusField* pInstrumentStatus);

Parameters:
pInstrumentStatus: pointer to the contract status structure. The structure:
struct CShfeFtdcInstrumentStatusField {

///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Contract/Instrument Trading Status
TShfeFtdcInstrumentStatusType InstrumentStatus;
///Trading Phase/Stage/Segment ID
TShfeFtdcTradingSegmentSNType TradingSegmentSN;
///Time of entering current status
TShfeFtdcTimeType EnterTime;
///Reason for entering current status
TShfeFtdcInstStatusEnterReasonType EnterReason;
///Entry Date of Current Status
TShfeFtdcDateType EnterDate;

};

2.1.35. OnRtnInsInstrument Method

New contract notification. After successfully logging into the Member System, the
Trading System will notify the Member System of newly added contracts via the public
stream.
Function Prototype:

void OnRtnInsInstrument(CShfeFtdcInstrumentField* pInstrument);

Parameters:
pInstrument: pointer to the contract structure. The structure:
struct CShfeFtdcInstrumentField {

Trading API & Market Data API Interface Specifications v2.00

72

///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Product ID
TShfeFtdcProductIDType ProductID;
///Product suite’s ID
TShfeFtdcProductGroupIDType ProductGroupID;
///Basic commodity ID
TShfeFtdcInstrumentIDType UnderlyingInstrID;
///Product type
TShfeFtdcProductClassType ProductClass;
///Type of open interest
TShfeFtdcPositionTypeType PositionType;
///Strike price
TShfeFtdcPriceType StrikePrice;
///Option type
TShfeFtdcOptionsTypeType OptionsType;
///Contract multiplier
TShfeFtdcVolumeMultipleType VolumeMultiple;
///Contract multiplier for basic commodity
TShfeFtdcUnderlyingMultipleType UnderlyingMultiple;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Contract name
TShfeFtdcInstrumentNameType InstrumentName;
///Delivery year
TShfeFtdcYearType DeliveryYear;
///Delivery month
TShfeFtdcMonthType DeliveryMonth;
///Month in advance
TShfeFtdcAdvanceMonthType AdvanceMonth;
///Is trading right now?
TShfeFtdcBoolType IsTrading;
///Currency ID
TShfeFtdcCurrencyIDType CurrencyID;

};

2.1.36. OnRtnBulletin Method

Announcement. When the Exchange sends announcement through the Trading System,
the Trading System will automatically inform Member System, and this method will be called.
Function Prototype:

void OnRtnBulletin(CShfeFtdcBulletinField* pBulletin);

Parameters:
pBulletin: pointer to the announcement structure. The structure:
struct CShfeFtdcBulletinField {

///Business day
TShfeFtdcDateType TradingDay;
///Bulletin number
TShfeFtdcBulletinIDType BulletinID;
///Sequence number

Trading API & Market Data API Interface Specifications v2.00

73

TShfeFtdcSequenceNoType SequenceNo;
///Bulletin type
TShfeFtdcNewsTypeType NewsType;
///Urgency
TShfeFtdcNewsUrgencyType NewsUrgency;
///Transmission time
TShfeFtdcTimeType SendTime;
///Message digest
TShfeFtdcAbstractType Abstract;
///Source of message
TShfeFtdcComeFromType ComeFrom;
///Message body
TShfeFtdcContentType Content;
///WEB address
TShfeFtdcURLLinkType URLLink;
///Market ID
TShfeFtdcMarketIDType MarketID;

};

2.1.37. OnRtnFlowMessageCancel Method

Data stream rollback notification. After the Trading System performs a disaster recovery
switch and when the user logs back into the Trading System and subscribes to a specific data
stream (either private or public), the Trading System will proactively notify the Member
System that certain messages in the data stream have been invalidated or canceled. At this
time, this method will be called.
Function Prototype:

void OnRtnFlowMessageCancel(
CShfeFtdcFlowMessageCancelField* pFlowMessageCancel);

Parameters:
pFlowMessageCancel: pointer to the data stream cancellation structure. The structure:
struct CShfeFtdcFlowMessageCancelField{

///Serial number in sequence
TShfeFtdcSequenceSeriesType SequenceSeries;
///Business day
TShfeFtdcDateType TradingDay;
///Datacenter ID
TShfeFtdcDataCenterIDType DataCenterID;
///Starting sequence number of rollback
TShfeFtdcSequenceNoType StartSequenceNo;
///Ending sequence number of rollback
TShfeFtdcSequenceNoType EndSequenceNo;

};
SequenceSeries: Datastream ID of rollback occured (private stream or public stream)
Message range of rollback: (StartSequenceNo,EndSequenceNo]

2.1.38. OnErrRtnOrderInsert Method

Trading API & Market Data API Interface Specifications v2.00

74

Order entry error return: sent automatically by the Trading System to Member System.
When the Member System sends an order entry instruction and an error occurs, the Trading
System will proactively notify the Member System. At this time, this method will be called.
Function Prototype:

void OnErrRtnOrderInsert(
CShfeFtdcInputOrderField* pInputOrder,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pInputOrder: points to the order entry structure, including the input data submitted

during the order entry. The structure:
struct CShfeFtdcInputOrderField {

///Order number, this field will be returned by Trading System.
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Order Price Type
TShfeFtdcOrderPriceTypeType OrderPriceType;
///buy-sell direction
TShfeFtdcDirectionType Direction;
///Combination Offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination Hedge Flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TShfeFtdcPriceType LimitPrice;
///Volume
TShfeFtdcVolumeType VolumeTotalOriginal;
///Expiry Type
TShfeFtdcTimeConditionType TimeCondition;
///GTD DATE
TShfeFtdcDateType GTDDate;
///Match volume condition type
TShfeFtdcVolumeConditionType VolumeCondition;
///Minimum Volume
TShfeFtdcVolumeType MinVolume;
///Trigger/Contingent Condition
TShfeFtdcContingentConditionType ContingentCondition;
///Stop-loss price
TShfeFtdcPriceType StopPrice;
///Forced close reasons
TShfeFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TShfeFtdcOrderLocalIDType OrderLocalID;
///Auto Suspend flag

Trading API & Market Data API Interface Specifications v2.00

75

TShfeFtdcBoolType IsAutoSuspend;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract not found The contract specified in the order could not be found
3 Member not found The member specified in the order could not be found
4 Client not found The client specified in the order could not be found
6 Invalid order fields The order contains invalid field values (e.g., out-of-

range enumerations) or a non-force-close order
includes a force-close reason

12 Duplicate order The local order ID in the order is duplicated
15 Client not registered with member The client in the order is not registered under the

specified member
16 IOC orders only allowed in

continuous trading
An IOC order was submitted outside the continuous
trading session

17 GFA orders only allowed in call
auction

A GFA order was submitted outside the call auction
phase

19 Quantity constraint must be IOC The time-in-force for a non-any-quantity order must be
IOC

20 GTD order expired The GTD date in the GTD order has already expired
21 Minimum quantity exceeds order

quantity
The minimum quantity specified exceeds the total
order quantity

22 Exchange data not synchronized The Trading System is not fully initialized. Please retry
later

23 Clearing group data not
synchronized

The Trading System is not fully initialized. Please retry
later

26 Operation not allowed in current
state

The contract is not in continuous trading, call auction,
or call auction equilibrium state

31 Insufficient client position The client does not have enough position to place the
close order

32 Client position limit exceeded The client exceeded their open position limit
33 Insufficient member position The member does not have enough position to place

the close order
34 Member position limit exceeded The member exceeded their position limit
35 Account not found The account specified in the order could not be found
36 Insufficient funds The account does not have sufficient funds
37 Invalid quantity The order quantity is not a positive multiple of the

minimum order quantity or exceeds the maximum

Trading API & Market Data API Interface Specifications v2.00

76

48 Price not a multiple of tick size The order price is not a valid multiple of the contract’s
tick size

49 Price exceeds upper limit The order price exceeds the contract’s upper limit
50 Price below lower limit The order price is below the contract’s lower limit
51 No trading permission No trading permission for the contract, client, or user
52 Close-only permission Only close orders are permitted for this member, client,

or user
53 Trading role not assigned The member does not hold the required trading role for

the client on the contract
54 Session not found The user is not logged in
57 Operation on another member not

allowed
The user attempted an operation for a non-affiliated
member

58 User mismatch The user in the order does not match the logged-in user
72 Natural person cannot open

positions
Natural person clients are not allowed to open positions
in the delivery month

78 GTD date not specified GTD order lacks a specified GTD date
79 Unsupported order type The exchange does not support this type of order
83 Stop orders allowed only in

continuous trading
Stop orders are not allowed outside the continuous
trading phase

84 Stop orders must be IOC or GFD Stop orders must have a time condition of IOC or GFD
95 Stop order must specify stop price Stop price is missing in the stop order
96 Insufficient hedge quota Client’s hedge quota is insufficient for hedge order
98 Force-close orders require admin Only admin users may submit force-close orders
101 Clearing members cannot trade The member type of the order is a clearing member
102 Clearing member not found Cannot find the clearing member corresponding to the

order member
103 Intraday hedge position cannot be

closed
Hedge positions opened today cannot be closed using
close-today orders

114 Best price orders cannot queue Best price orders must have time-in-force = IOC
131 Client exceeds intraday open limit Client exceeded the intraday open limit for the contract
132 Client exceeds per-second order

limit
Client exceeded order limit per second on the product

153 Market orders must be GFD or
IOC

Market orders must have time-in-force = GFD or IOC

154 Market orders allowed only in
continuous trading

Market orders are not allowed outside continuous
trading

155 Market orders only supported for
futures and options

Market orders not allowed on non-futures/options
contracts

1005 No record The contract record associated with the order is
missing

2.1.39. OnErrRtnOrderAction Method

Order operation error return. When the Member System sends an order operation
instruction and an error occurs, the Trading System will proactively notify the Member
System. At this time, this method will be called.
Function Prototype:

void OnErrRtnOrderAction(
CShfeFtdcOrderActionField* pOrderAction,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pOrderAction: pointer to the order operation structure, including the input data while

Trading API & Market Data API Interface Specifications v2.00

77

submitting the order operation and the order ID returned from the Trading System. The
structure:

struct CShfeFtdcOrderActionField {
///Order number, this field will be returned by Trading System.
TShfeFtdcOrderSysIDType OrderSysID;
///Local order ID
TShfeFtdcOrderLocalIDType OrderLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Price, NOT USED
TShfeFtdcPriceType LimitPrice;
///Change in quantity, NOT USED
TShfeFtdcVolumeType VolumeChange;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit, NOT USED
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract not found The contract specified in the order could not be found
3 Member not found The member specified in the order could not be found
4 Client not found The client specified in the order could not be found
8 Invalid field value in order

operation
The order contains invalid field values (e.g., out-of-
range enumerations)

15 Client not registered with member The client in the order is not registered under the
specified member

16 IOC orders only allowed in
continuous trading

An IOC order was submitted outside the continuous
trading session

17 GFA orders only allowed in call
auction

A GFA order was submitted outside the call auction
phase

20 GTD order expired The GTD date in the GTD order has already expired
22 Exchange data not synchronized The Trading System is not fully initialized. Please retry

later

Trading API & Market Data API Interface Specifications v2.00

78

23 Clearing group data not
synchronized

The Trading System is not fully initialized. Please retry
later

24 Order not found The specified order to be operated on cannot be found
26 Operation not allowed in current

state
The contract is not in continuous trading, call auction,
or call auction equilibrium state

28 Order fully filled The order has already been fully executed
29 Order already canceled The order has already been canceled
30 Insufficient quantity for

modification
The remaining order quantity would be less than 0 after
modification

31 Insufficient client position The client does not have enough position to place the
close order

32 Client position limit exceeded The client exceeded their open position limit
33 Insufficient member position The member does not have enough position to place

the close order
34 Member position limit exceeded The member exceeded their position limit
35 Account not found The account specified in the order could not be found
36 Insufficient funds The account does not have sufficient funds
37 Invalid quantity The order quantity is not a positive multiple of the

minimum order quantity or exceeds the maximum
48 Price not a multiple of tick size The order price is not a valid multiple of the contract’s

tick size
49 Price exceeds upper limit The order price exceeds the contract’s upper limit
50 Price below lower limit The order price is below the contract’s lower limit
51 No trading permission No trading permission for the contract, client, or user
52 Close-only permission Only close orders are permitted for this member, client,

or user
54 Session not found The user is not logged in
57 Operation on another member not

allowed
The user attempted an operation for a non-affiliated
member

58 User mismatch The user in the order does not match the logged-in user
71 Operation on derivative order not

allowed
The user attempted to operate on a derivative order

72 Natural person cannot open
positions

Natural person clients are not allowed to open positions
in the delivery month

76 Order already suspended The order has already been suspended at the time of the
suspension request

77 Order already activated The order has already been activated at the time of the
activation request

79 Unsupported order type The exchange does not support this type of order
83 Stop orders allowed only in

continuous trading
Stop orders are not allowed outside the continuous
trading phase

95 Stop order must specify stop price Stop price is missing in the stop order
96 Insufficient hedge quota Client’s hedge quota is insufficient for hedge order
98 Force-close orders require admin Only admin users may submit force-close orders
99 Operation on behalf of another

user not permitted
The user attempted to operate on an order submitted by
a different user under the same member without proper
authorization

131 Client exceeds intraday open limit Client exceeded the intraday open limit for the contract
133 Client exceeds per-second

cancelation limit
Client exceeded the allowed number of cancellations
for a specific product within one second

2.1.40. OnErrRtnQuoteInsert Method

Erroneous quote entry return. When the Member System sends a quote entry instruction

Trading API & Market Data API Interface Specifications v2.00

79

and an error occurs, the Trading System will proactively notify the Member System. At this
time, this method will be called.
Function Prototype:

void OnErrRtnQuoteInsert(
CShfeFtdcInputQuoteField* pInputQuote,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pInputQuote: pointer to the input quote structure, including the input data for quote

entry operation and the quote number returned from the Trading System. The input quote
structure:

struct CShfeFtdcInputQuoteField {
///Quoto number,this field will be returned by Trading System.
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Volume
TShfeFtdcVolumeType Volume;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Buyer’s combination offset flag
TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
///Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price
TShfeFtdcPriceType BidPrice;
///Seller’s combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
///Seller’s combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
///Seller’s price
TShfeFtdcPriceType AskPrice;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

Trading API & Market Data API Interface Specifications v2.00

80

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in quote not found
3 Member cannot be found Member in quote not found
4 Client cannot be found Client in quote not found
7 Quote field error Invalid field value in quote (enum value out of range)
13 Duplicate quote Duplicate local quote ID in the quote
15 Client didn’t open an account at

this member
Client in quote has not opened an account with the
specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

Contract trading status is neither continuous trading,
call auction order entry, nor call auction balancing

31 Insufficient client position for
closing

Client’s position insufficient

32 Exceeded client position limit Quote causes client’s general position to exceed the
limit

33 Insufficient member position for
closing

Member’s position insufficient

34 Exceeded member position limit Quote causes member’s general position to exceed the
limit

35 Account not found Fund account used in quote not found
36 Insufficient funds Insufficient funds in the fund account
37 Invalid quantity The quote quantity is not a positive multiple of the

minimum order quantity or exceeds the maximum
48 Price not a multiple of minimum

price fluctuation
Quote price is not an integer multiple of the contract’s
minimum price fluctuation

49 Price exceeds upper limit price Quote price exceeds contract’s upper limit price
50 Price falls below lower limit price Quote price falls below contract’s lower limit price
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
52 Close-only Only the member, client, or user has permission to

close positions on the specified contract
53 No such trading role On the designated contract, member doesn’t has the

trading role corresponding to such client
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in quote does not match the logged-in user
72 Opening positions not allowed for

natural persons
Natural person client initiates an opening order in the
delivery month

79 Order type that is not supported The Exchange does not support this order type
96 Insufficient hedge quota Client’s hedging quota insufficient when submitting

quote
98 Forced liquidation orders must be

used by administrators
Non-administrator user submitted a forced liquidation
order

101 Clearing members are not allowed
to trade

Member type in quote is a clearing member

Trading API & Market Data API Interface Specifications v2.00

81

102 Corresponding clearing member
not found

Clearing member corresponding to the quote’s member
not found

103 Same-day hedging positions
cannot be closed

Hedging positions should not use close-today quotes
for closing

131 Exceeded client’s intraday
contract opening limit

Client’s opening quantity on a contract exceeds the
intraday opening limit

132 Exceeded client’s per-second
order limit for the product

Number of client orders on a product within one
second exceeds the limit

1005 No record Contract record corresponding to the quote is missing

2.1.41. OnErrRtnQuoteAction Method

Erroneous quote return. When the Member System sends a quote instruction and an error
occurs, the Trading System will proactively notify the Member System. At this time, this
method will be called.
Function Prototype:

void OnErrRtnQuoteAction(
CShfeFtdcQuoteActionField* pQuoteAction,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pQuoteAction: pointer to the quote structure, including the input data for quote request

and the quote number returned from Trading System. The quote structure:
struct CShfeFtdcQuoteActionField {

///Quote number,this field will be returned by Trading System.
TShfeFtdcQuoteSysIDType QuoteSysID;
///Local quote number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

Trading API & Market Data API Interface Specifications v2.00

82

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in quote operation not found
3 Member cannot be found Member in quote operation not found
4 Client cannot be found Client in quote operation not found
8 Order operation field error Invalid field value in derived orders from quote

operation (e.g., price is not a valid float or not within
the valid range)

9 Quote operation field error Invalid field value in quote operation (enum value out
of range or operation flag is modify, activate, or
suspend)

15 Client didn’t open an account at
this member

Client has not opened an account with the specified
member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

25 Quote not found Quote to be operated on cannot be found
26 This operation is prohibited by

current state
For activation operations, the contract trading status is
neither continuous trading, auction order, nor auction
equilibrium
For other operations, the trading status is neither
continuous trading nor auction order

28 Order already fully filled Orders derived from the quote have been fully filled
29 Order already canceled Orders derived from the quote have been canceled
35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in quote operation does not match the logged-in
user

70 Quote has already been canceled Quote has already been canceled
99 Cannot operate on behalf of other

users
Unauthorized user operating on quotes submitted by
other users under the same member

2.1.42. OnErrRtnExecOrderInsert Method

Option exercise entry error return. When the Member System sends an option exercise
and an error occurs, the Trading System will proactively notify the Member System. At this
time, this method will be called.
Function Prototype:

void OnErrRtnExecOrderInsert(
CShfeFtdcInputExecOrderField* pInputExecOrder,
CShfeFtdcRspInfoField* pRspInfo);

Trading API & Market Data API Interface Specifications v2.00

83

Parameters:
pInputExecOrder: pointer to the option exercise structure. The structure:
struct CShfeFtdcInputExecOrderField {

///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local annoncement execution number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///position direction, i.e. whether buyer(long position) or seller(short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
///Flag indicating whether to retain futures positions after option exercise, not
used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract cannot be found in the option exercise
3 Member cannot be found Member cannot be found in the option exercise
4 Client cannot be found Client cannot be found in the option exercise
15 Client didn’t open an account at

this member
Client in the in the option exercise didn’ open an
account at the designated member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

Trading API & Market Data API Interface Specifications v2.00

84

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither continuous trading
nor trading business processing

31 Insufficient client position for
closing

Client’s position insufficient when entering option
exercise

33 Insufficient member position for
closing

Member’s position insufficient when entering option
exercise

35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
37 Invalid quantity Invalid quantity in option exercise
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option exercise does not match the logged-in
user

79 Order type that is not supported The Exchange does not support this order type
89 Option exercise field error Invalid field value in option exercise (enum value out

of range)
91 Duplicate option exercise Duplicate local option exercise ID in the option

exercise
94 Option exercise is allowed only

for options
Contract in option exercise is a non-option contract

101 Clearing members are not allowed
to trade

Member type in option exercise is a clearing member

102 Corresponding clearing member
not found

Clearing member corresponding to the option
exercise’s member not found

127 Not within declaration period Not within the contract delivery period (exercisable
period)

129 Option exercise or abandonment
cannot be opening orders

The offset flag in the execution of declaration must
indicate closing

146 Only holders of long positions can
exercise

Only option buyers can exercise

1005 No record Contract record corresponding to the option exercise is
missing

2.1.43. OnErrRtnExecOrderAction Method

Option exercise operation error return. When the Member System sends an option
exercise operation instruction and an error occurs, the Trading System will proactively notify
the Member System. At this time, this method will be called.
Function Prototype:

void OnErrRtnExecOrderAction(
CShfeFtdcExecOrderActionField* pExecOrderAction,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pExecOrderAction: pointer to the option exercise operation structure. The structure:
struct CShfeFtdcExecOrderActionField {

///Option exercise number

Trading API & Market Data API Interface Specifications v2.00

85

TShfeFtdcExecOrderSysIDType ExecOrderSysID;
///Local annoncement execution number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option exercise operation not found
3 Member cannot be found Member in option exercise operation not found
4 Client cannot be found Client in option exercise operation not found
15 Client didn’t open an account at

this member
Client in option exercise operation has not opened an
account with the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither continuous trading
nor trading business processing

35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option exercise operation does not match the
logged-in user

89 Option exercise field error Invalid field value in option exercise
90 Error field in the execution of Invalid field value in option exercise operation (enum

Trading API & Market Data API Interface Specifications v2.00

86

declaration opration value out of range or operation flag is modify, activate,
or suspend)

92 The execution of declaration has
been canceled

The declaration operation to be executed has been
canceled

93 The execution of declaration can
not be found

The declaration operation to be executed cann not be
found

127 Not within declaration period Not within the contract delivery period (exercisable
period)

1005 No record Contract record corresponding to the option exercise
operation is missing

2.1.44. OnRspQryExecOrder Method

Option exercise query response. When the Trading System automatically informs the
Member System, this method will be called.
Function Prototype:

void OnRspQryExecOrder(
CShfeFtdcExecOrderField* pExecOrder,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pExecOrder: pointer to the option exercise structure. The structure:
struct CShfeFtdcExecOrderField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local annoncement execution number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
///position direction, i.e. whether buyer(long position) or seller(short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
///Flag indicating whether to retain futures positions after option exercise, not
used

Trading API & Market Data API Interface Specifications v2.00

87

TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Option exercise number
TShfeFtdcExecOrderSysIDType ExecOrderSysID;
///order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Execution result
TShfeFtdcExecResultType ExecResult;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Action day
TShfeFtdcDateType ActionDay;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query;
the query can only be performed for a single member

nRequestID: returns the user option exercise request ID; this ID is specified by the user
upon submitting an option exercise query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.45. OnRspQryExchangeRate Method

Exchange rate query response. This method will be called when the Member System
sends an exchange rate query request and the Trading System returns a response.
Function Prototype:

void OnRspQryExchangeRate(

Trading API & Market Data API Interface Specifications v2.00

88

CShfeFtdcRspExchangeRateField* pRspExchangeRate,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pRspExchangeRate: pointer to the exchange rate response information structure. The

structure:
struct CShfeFtdcRspExchangeRateField {

///Business day
TShfeFtdcDateType TradingDay;
///Currency ID
TShfeFtdcCurrencyIDType CurrencyID;
///foreign exchange unit
TshfeFtdcRateUnitType RateUnit;
///central parity rate
TShfeFtdcExRatePriceType RatePrice;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
80 User is not authorized to do so Only trading users are allowed to perform the query

nRequestID: returns the user exchange rate query request ID; this ID is specified by the
user when submitting an exchange rate query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.46. OnRspAbandonExecOrderInsert Method

Option abandonment response. This method will be called when the Member System
sends an option abandonment entry request and the Trading System returns a response.
Function Prototype:

void OnRspAbandonExecOrderInsert(
CShfeFtdcInputAbandonExecOrderField* pInputAbandonExecOrder,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pInputAbandonExecOrder: pointer to the option abandonment structure. The structure:
struct CShfeFtdcInputAbandonExecOrderField {

///Contract number

Trading API & Market Data API Interface Specifications v2.00

89

TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Option abandonment local ID
TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Direction of the position applying for abandon; only long positions can apply for
abandon
TShfeFtdcPosiDirectionType PosiDirection;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option abandonment not found
3 Member cannot be found Member in option abandonment not found
4 Client cannot be found Client in option abandonment not found
15 Client didn’t open an account at

this member
Client in option abandonment has not opened an
account with the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither continuous trading
nor trading business processing

31 Insufficient client position for
closing

Client’s position insufficient when entering option
abandonment

33 Insufficient member position for
closing

Member’s position insufficient when entering option
abandonment

35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account

Trading API & Market Data API Interface Specifications v2.00

90

37 Invalid quantity Invalid quantity in option abandonment
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option abandonment does not match the
logged-in user

79 Order type that is not supported The Exchange does not support this order type
101 Clearing members are not allowed

to trade
Member type in option abandonment is a clearing
member

102 Corresponding clearing member
not found

Clearing member corresponding to the order’s member
not found

121 Option abandonment field error Invalid field value in option abandonment
123 Duplicate option abandonment Duplicate local option abandonment ID in the option

abandonment
126 Option abandonment is allowed

only for options
Contract in option abandonment is a non-option
contract

128 Only holders of long positions can
enjoy execution waiver

Only option buyers can enjoy execution waiver

129 Option exercise or abandonment
cannot be opening orders

Offset flag in option abandonment must be limited to
close

149 Option abandonment applications
can only be submitted on option
expiration day

Trading day is not option expiration day

1005 No record Contract record corresponding to the option
abandonment is missing

nRequestID: returns the user option abandonment request ID; this ID is specified by the
user upon an option abandonment.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.47. OnRspAbandonExecOrderAction Method

Option abandonment operation response, including cancellation, suspension, activation,
and modification of option abandonment. This method will be called when the Member
System sends an option abandonment operation request and the Trading System returns a
response.
Function Prototype:

void OnRspAbandonExecOrderAction(
CShfeFtdcAbandonExecOrderActionField* pAbandonExecOrderAction,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pAbandonExecOrderAction: pointer to the option abandonment structure. The

structure:
struct CShfeFtdcAbandonExecOrderActionField {

///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///Option abandonment local ID

Trading API & Market Data API Interface Specifications v2.00

91

TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option abandonment operation not found
3 Member cannot be found Member in option abandonment operation not found
4 Client cannot be found Client in option abandonment operation not found
15 Client didn’t open an account at

this member
Client in option abandonment operation has not opened
an account with the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither continuous trading
nor trading business processing

35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option abandonment operation does not match
the logged-in user

121 Option abandonment field error Invalid field value in option abandonment
122 Option abandonment operation

field error
Invalid field value in option abandonment operation
(enum value out of range or operation flag is modify,
activate, or suspend)

Trading API & Market Data API Interface Specifications v2.00

92

124 The option abandonment has
already been canceled

The option abandonment to be operated on has already
been deleted

125 Option abandonment not found The option abandonment to be operated on was not
found

149 Option abandonment applications
can only be submitted on option
expiration day

Trading day is not option expiration day

1005 No record The contract record corresponding to the option
abandonment operation is missing

nRequestID: returns the user option abandonment request ID; this ID is specified by the
user upon submitting an option abandonment.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.48. OnRspQryAbandonExecOrder Method

Option abandonment query response. This method will be called when the Member
System sends an option abandonment query request and the Trading System returns a
response.
Function Prototype:

void OnRspQryAbandonExecOrder(
CShfeFtdcAbandonExecOrderField* pAbandonExecOrder,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pAbandonExecOrder: pointer to the option abandonment structure. The structure:
struct CShfeFtdcAbandonExecOrderField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Option abandonment Local ID
TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Direction of the position applying for abandon; only long positions can apply for

Trading API & Market Data API Interface Specifications v2.00

93

abandon
TshfeFtdcPosiDirectionType PosiDirection;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Result of abandon execution
TShfeFtdcExecResultType AbandonExecResult;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Action day
TShfeFtdcDateType ActionDay;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query;
the query can only be performed for a single member

nRequestID: returns the user option abandonment query request ID; this ID is specified
by the user upon submitting an option abandonment query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.49. OnRtnAbandonExecOrder Method

Option abandonment return. When the Member System performs an option abandonment
entry or operation resulting in a change of option abandonment status, the Trading System
will proactively notify the Member System. At this time, this method will be called.
Function Prototype:

void OnRtnAbandonExecOrder(

Trading API & Market Data API Interface Specifications v2.00

94

CShfeFtdcAbandonExecOrderField* pAbandonExecOrder);

Parameters:
pAbandonExecOrder: pointer to the option abandonment structure.
struct CShfeFtdcAbandonExecOrderField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Option abandonment Local ID
TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Direction of the position applying for abandon; only long positions can apply for
abandon
TShfeFtdcPosiDirectionType PosiDirection;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Result of abandon execution
TShfeFtdcExecResultType AbandonExecResult;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Action day
TShfeFtdcDateType ActionDay;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

Trading API & Market Data API Interface Specifications v2.00

95

2.1.50. OnErrRtnAbandonExecOrderInsert Method

Option abandonment entry error return. When the Member System sends an option
abandonment entry instruction and an error occurs, the Trading System will proactively notify
the Member System. At this time, this method will be called.
Function Prototype:

void OnErrRtnAbandonExecOrderInsert(
CShfeFtdcInputAbandonExecOrderField* pInputAbandonExecOrder,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pInputAbandonExecOrder: pointer to the option abandonment entry structure.
struct CShfeFtdcInputAbandonExecOrderField {

///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Option abandonment Local ID
TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge Flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Direction of the position applying for abandon; only long positions can apply for
abandon
TshfeFtdcPosiDirectionType PosiDirection;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};

Trading API & Market Data API Interface Specifications v2.00

96

Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option abandonment not found
3 Member cannot be found Member in option abandonment not found
4 Client cannot be found Client in option abandonment not found
15 Client didn’t open an account at

this member
Client in option abandonment has not opened an
account with the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither continuous trading
nor trading business processing

31 Insufficient client position for
closing

Client’s position insufficient when entering option
abandonment

33 Insufficient member position for
closing

Member’s position insufficient when entering option
abandonment

35 Account not found Required fund account not found
36 Insufficient funds Insufficient funds in the fund account
37 Invalid quantity Invalid quantity in option abandonment
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option abandonment does not match the
logged-in user

79 Order type that is not supported The Exchange does not support this order type
101 Clearing members are not allowed

to trade
Member type in option abandonment is a clearing
member

102 Corresponding clearing member
not found

Clearing member corresponding to the option
abandonment’s member not found

121 Option abandonment field error Invalid field value in option abandonment
123 Duplicate option abandonment Duplicate local option abandonment ID in the option

abandonment
126 Option abandonment is allowed

only for options
Contract in option abandonment is a non-option
contract

128 Only holders of long positions can
enjoy execution waiver

Only option buyers can enjoy execution waiver

129 Option exercise or abandonment
cannot be opening orders

The offset flag in the execution of declaration must
indicate closing

149 Option abandonment applications
can only be submitted on option
expiration day

Trading day is not option expiration day

1005 No record Contract record corresponding to the option
abandonment is missing

2.1.51. OnErrRtnAbandonExecOrderAction Method

Option abandonment operation error return. When the Member System sends an option
abandonment and an error occurs, the Trading System will proactively notify the Member
System. At this time, this method will be called.
Function Prototype:

Trading API & Market Data API Interface Specifications v2.00

97

void OnErrRtnAbandonExecOrderAction(
CShfeFtdcAbandonExecOrderActionField* pAbandonExecOrderAction,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pAbandonExecOrderAction: pointer to the option abandonment structure. The

structure:
struct CShfeFtdcAbandonExecOrderActionField {

///Option abandonment system ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///Option abandonment local ID
TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option abandonment operation not found
3 Member cannot be found Member in option abandonment operation not found
4 Client cannot be found Client in option abandonment operation not found
15 Client didn’t open an account at

this member
Client in option abandonment has not opened an
account with the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither continuous trading
nor trading business processing

35 Account not found Required fund account not found

Trading API & Market Data API Interface Specifications v2.00

98

36 Insufficient funds Insufficient funds in the fund account
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option abandonment operation does not match
the logged-in user

121 Option abandonment field error Invalid field value in option abandonment
122 Option abandonment operation

field error
Invalid field value in option abandonment operation
(enum value out of range or operation flag is modify,
activate, or suspend)

124 The option abandonment has
already been canceled

The option abandonment to be operated on has already
been deleted

125 Option abandonment not found The option abandonment to be operated on was not
found

149 Option abandonment applications
can only be submitted on option
expiration day

Trading day is not option expiration day

1005 No record The contract record corresponding to the option
abandonment operation is missing

2.1.52. OnRspQuoteDemand Method

Quote request entry response. This method will be called when the Member System
sends a quote request and the Trading System returns a response.
Function Prototype:

void OnRspQuoteDemand(
CShfeFtdcQuoteDemandInfoField* pQuoteDemandInfo,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pQuoteDemandInfo: pointer to the quote request entry response structure. The structure:
struct CShfeFtdcQuoteDemandInfoField {

///Business day
TShfeFtdcDateType TradingDay;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Instrument/contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///quote demand local input ID
TShfeFtdcOrderLocalIDType QuoteDemandLocalID;
///request time
TShfeFtdcTimeType DemandTime;
///Action day
TShfeFtdcDateType ActionDay;

Trading API & Market Data API Interface Specifications v2.00

99

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in quote request not found
3 Member cannot be found Member in quote request not found
4 Client cannot be found Client in quote request not found
15 Client didn’t open an account at

this member
Client in quote request has not opened an account with
the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

Contract is untradeable or contract is not in continuous
trading status

51 Not authorized to trade No trading permission for specified contract or client
for the specified contract or the user

53 No such trading role On the designated contract, member doesn’t has the
trading role corresponding to such client

54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in quote request does not match the logged-in user
88 Target user to be operated on not

found
User in quote request not found

101 Clearing members are not allowed
to trade

Member type in quote request is a clearing member

148 Current market price is within
reasonable spread range, and quote
request is unnecessary

There are existing buy-side orders, and price has
reached the upper limit;
There are existing sell-side orders, and price has
reached the lower limit;
Orders exist on both buy and sell sides, and the price
spread is within reasonable range

nRequestID: returns the user quotation entry request ID; this ID is specified by the user
upon performing the quotation entry.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.53. OnRtnQuoteDemandNotify Method

Quote request distribution. This method will be called when the Trading System
proactively notifies market maker users with corresponding permissions.
Function Prototype:

void OnRtnQuoteDemandNotify(
CShfeFtdcQuoteDemandNotifyField* pQuoteDemandNotify);

Trading API & Market Data API Interface Specifications v2.00

100

Parameters:
pQuoteDemandNotify: pointer to the quote request notification. The structure:
struct CShfeFtdcQuoteDemandNotifyField {

///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Quote request date
TShfeFtdcDateType DemandDay;
///Quote request time
TShfeFtdcTimeType DemandTime;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

};

2.1.54. OnRspOptionSelfCloseUpdate Method

Option self-hedge update response. This method will be called when the Member System
performs an option self-hedge update and the Trading System returns a response.
Function Prototype:

void OnRspOptionSelfCloseUpdate(
CShfeFtdcInputOptionSelfCloseField* pInputOptionSelfClose,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pInputOptionSelfClose: pointer to the option self-hedge update structure. The structure:
struct CShfeFtdcInputOptionSelfCloseField {

///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

Trading API & Market Data API Interface Specifications v2.00

101

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract for option self-hedge update not found
3 Member cannot be found Member for option self-hedge update not found
4 Client cannot be found Client for option self-hedge update not found
15 Client didn’t open an account at

this member
The client for option self-hedge update is not opened
under the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

Contract trading status is neither continuous trading nor
processing trading business

37 Invalid quantity Invalid quantity in option self-hedge update
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
53 No such trading role On the designated contract, member doesn’t has the

trading role corresponding to such client
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option self-hedge update does not match the
logged-in user

79 Order type that is not supported The Exchange does not support this order type
101 Clearing members are not allowed

to trade
Member type requesting option self-hedge update is a
clearing member

102 Corresponding clearing member
not found

Clearing member corresponding to option self-hedge
update’s member not found

127 Not within declaration period The futures position resulting from the option self-
hedge exercised by the option seller can only be
submitted during the delivery period (exercise window)

137 Option self-hedge field error Option self-hedge update contains invalid field values
(enumeration value out of range)

139 Duplicate option self-hedge
update

Duplicate local option self-hedge ID in the option self-
hedge update

141 Option self-hedge update is only
applicable to options

The contract in the option self-hedge update is not an
option contract

144 This client’s SelfCloseFlag cannot
be retain option position

Only market makers can submit retain option position
requests

145 This client’s SelfCloseFlag cannot
be self-hedge option position

Market makers can only submit retain option position
requests

1005 No record Contract record corresponding to the option self-hedge
update is missing

nRequestID: returns the user option self-hedge update request ID; this ID is specified by
the user upon performing an option self-hedge update.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

Trading API & Market Data API Interface Specifications v2.00

102

2.1.55. OnErrRtnOptionSelfCloseUpdate Method

Option self-hedge update error return. When the Member System performs an option
self-hedge update and an error occurs, the Trading System will proactively notify the Member
System. At this time, this method will be called.
Function Prototype:

void OnErrRtnOptionSelfCloseUpdate(
CShfeFtdcInputOptionSelfCloseField* pInputOptionSelfClose,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pInputOptionSelfClose: pointer to the option self-hedge update structure. The structure:
struct CShfeFtdcInputOptionSelfCloseField {

///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract for option self-hedge update not found
3 Member cannot be found Member for option self-hedge update not found
4 Client cannot be found Client for option self-hedge update not found
15 Client didn’t open an account at The client for option self-hedge update is not opened

Trading API & Market Data API Interface Specifications v2.00

103

this member under the specified member
22 The exchange’s data is not in the

synchronized state
Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

Contract trading status is neither continuous trading nor
processing trading business

37 Invalid quantity Invalid quantity in option self-hedge update
51 Not authorized to trade No trading permission for specified contract or client

for the specified contract or the user
53 No such trading role On the designated contract, member doesn’t has the

trading role corresponding to such client
57 Operation shall not be conducted

by other members
User operating on behalf of a member not associated
with them

58 Unmatched user User in option self-hedge update does not match the
logged-in user

79 Order type that is not supported The Exchange does not support this order type
101 Clearing members are not allowed

to trade
Member type requesting option self-hedge update is a
clearing member

102 Corresponding clearing member
not found

Clearing member corresponding to option self-hedge
update’s member not found

127 Not within declaration period The futures position resulting from the option self-
hedge exercised by the option seller can only be
submitted during the delivery period (exercise window)

137 Option self-hedge field error Option self-hedge update contains invalid field values
(enumeration value out of range)

139 Duplicate option self-hedge
update

Duplicate local option self-hedge ID in the option self-
hedge update

141 Option self-hedge update is only
applicable to options

The contract in the option self-hedge update is not an
option contract

144 This client’s SelfCloseFlag cannot
be retain option position

Only market makers can submit retain option position
requests

145 This client’s SelfCloseFlag cannot
be self-hedge option position

Market makers can only submit retain option position
requests

1005 No record Contract record corresponding to the option self-hedge
update is missing

2.1.56. OnRtnOptionSelfCloseUpdate Method

Option self-hedge update return. When the Member System performs an option self-
hedge update resulting in a change to the option self-hedge table, the Trading System will
proactively notify the Member System. At this time, this method will be called.
Function Prototype:

void OnRtnOptionSelfCloseUpdate(
CShfeFtdcOptionSelfCloseField* pOptionSelfClose);

Parameters:
pOptionSelfClose: pointer to the option self-hedge structure. The structure:
struct CShfeFtdcOptionSelfCloseField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID

Trading API & Market Data API Interface Specifications v2.00

104

TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Option self-hedge result
TShfeFtdcExecResultType SelfCloseResult;
///order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Action day
TShfeFtdcDateType ActionDay;

};

2.1.57. OnRspOptionSelfCloseAction Method

Option self-hedge operation response, including the cancellation, suspension, activation,
and modification of option self-hedge. This method will be called when the Member System
performs an option self-hedge operation and the Trading System returns a response.
Function Prototype:

void OnRspOptionSelfCloseAction(
CShfeFtdcOptionSelfCloseActionField* pOptionSelfCloseAction,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,

Trading API & Market Data API Interface Specifications v2.00

105

bool bIsLast);

Parameters:
pOptionSelfCloseAction: pointer to the option self-hedge operation structure. The structure:
struct CShfeFtdcOptionSelfCloseActionField{

///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Option self-hedge operation flag
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option self-hedge operation not found
3 Member cannot be found Member in option self-hedge operation not found
4 Client cannot be found Client in option self-hedge operation not found
15 Client didn’t open an account at

this member
Client in option self-hedge operation has not opened an
account with the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither in continuous
trading nor in trading business processing state

51 Not authorized to trade No trading permission for the specified contract, or the
client on the specified contract, or the trader

53 No such trading role On the designated contract, member doesn’t has the
trading role corresponding to such client

Trading API & Market Data API Interface Specifications v2.00

106

57 Operation shall not be conducted
by other members

User operating on behalf of a member not associated
with them

58 Unmatched user User in option self-hedge operation does not match the
logged-in user

138 Option self-hedge operation field
error

Invalid field value in option self-hedge operation
(enum value out of range or operation flag is modify,
activate, or suspend)

140 Option self-hedge update has been
canceled

Option self-hedge to be operated on has been deleted

142 Option self-hedge not found Option self-hedge to be operated on cannot be found
143 Option self-hedge operation must

be deletion
Option self-hedge operation type error

nRequestID: returns the user option self-hedge request ID; this ID is specified by the
user upon performing an option self-hedge operation.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.58. OnErrRtnOptionSelfCloseAction Method

Option self-hedge operation error return. When the Member System performs an option
self-hedge operation and an error occurs, the Trading System will proactively notify the
Member System. At this time, this method will be called.
Function Prototype:

void OnErrRtnOptionSelfCloseAction(
CShfeFtdcOptionSelfCloseActionField* pOptionSelfCloseAction,
CShfeFtdcRspInfoField* pRspInfo);

Parameters:
pOptionSelfCloseAction: pointer to the option self-hedge operation structure. The

structure:
struct CShfeFtdcOptionSelfCloseActionField{

///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Option self-hedge operation flag
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Operation of local number
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address

Trading API & Market Data API Interface Specifications v2.00

107

TShfeFtdcMacAddressType MacAddress;
};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
2 Contract cannot be found Contract in option self-hedge operation not found
3 Member cannot be found Member in option self-hedge operation not found
4 Client cannot be found Client in option self-hedge operation not found
15 Client didn’t open an account at

this member
Client in option self-hedge operation has not opened an
account with the specified member

22 The exchange’s data is not in the
synchronized state

Initialization of Trading System is not completed,
please try later

23 The settlement group’s data is not
in synchronized date

Initialization of Trading System is not completed,
please try later

26 This operation is prohibited by
current state

The contract trading status is neither in continuous
trading nor in trading business processing state

51 Not authorized to trade No trading permission for the specified contract, or the
client on the specified contract, or the trader

53 No such trading role On the designated contract, member doesn’t has the
trading role corresponding to such client

57 Operation shall not be conducted
by other members

User operating on behalf of a member not associated
with them

58 Unmatched user User in option self-hedge operation does not match the
logged-in user

138 Option self-hedge operation field
error

Invalid field value in option self-hedge operation
(enum value out of range or operation flag is modify,
activate, or suspend)

140 Option self-hedge update has been
canceled

Option self-hedge to be operated on has been deleted

142 Option self-hedge not found Option self-hedge to be operated on cannot be found
143 Option self-hedge operation must

be deletion
Option self-hedge operation type error

2.1.59. OnRspQryOptionSelfClose Method

Option self-hedge query response. This method will be called when the Member System
sends an option self-hedge query request and the Trading System returns a response.
Function Prototype:

void OnRspQryOptionSelfClose(
CShfeFtdcOptionSelfCloseField* pOptionSelfClose,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:

Trading API & Market Data API Interface Specifications v2.00

108

pOptionSelfClose: pointer to the option self-hedge structure. The structure:
struct CShfeFtdcOptionSelfCloseField {

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Volume
TShfeFtdcVolumeType Volume;
///Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Option self-hedge result
TShfeFtdcExecResultType SelfCloseResult;
///order date
TShfeFtdcDateType InsertDate;
///Entry time
TShfeFtdcTimeType InsertTime;
///Cancellation time
TShfeFtdcTimeType CancelTime;
///Settlement member’s number
TShfeFtdcParticipantIDType ClearingPartID;
///Action day
TShfeFtdcDateType ActionDay;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:

Trading API & Market Data API Interface Specifications v2.00

109

Error ID Error message Possible cause
54 Session Not Found User Not Logged In
57 Operation shall not be conducted

by other members
The conditions under other members cannot be queried

80 User is not authorized to do so Only trading users are allowed to perform the query;
the query can only be performed for a single member

nRequestID: returns the user option self-hedge query request ID; this ID is specified by
the user upon submitting the option self-hedge query.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

2.1.60. OnRspAuthenticate Method

This method is only for proprietary members and is used for authentication before
proprietary members collect trading terminal information.

Terminal authentication response. This method will be called when the proprietary
Member System performs terminal authentication and the Trading System returns a response.
Function Prototype:

void OnRspAuthenticate(
CShfeFtdcProductAuthField* pProductAuth,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameters:
pProductAuth: pointer to the terminal product authentication information structure. The

structure:
struct CShfeFtdcProductAuthField
{

///Trading terminal name
TShfeFtdcProductInfoType AppID;
///Terminal authentication authorization ID
TShfeFtdcAuthIDType AuthID;

};

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
-1 Authentication failed Unable to find the authorization ID corresponding to

the trading terminal or the authorization ID does not
match

nRequestID: returns the user terminal authentication request ID; this ID is specified by
the user upon performing terminal authentication.

bIsLast: indicates whether or not this return is the last return regarding nRequestID.

Trading API & Market Data API Interface Specifications v2.00

110

2.2. CShfeFtdcTraderApi Interfaces

The CShfeFtdcTraderApi interface provides users with functions including order and
quote entry, order and quote cancellation, order suspension and activation, order and quote
request, trade query, member-client query, member position query, client position query,
contract query, contract trading status query, and exchange announcement query.

The Trading System imposes limits on the instruction speed (number of instructions sent
per second and number of in-transit instructions) for each seat; and exceeding the limit will
result in instruction sending failures. Please consult the relevant department of the Exchange
for specific quota number.

2.2.1. CreateFtdcTraderApi Method

This is to create an instance of the CShfeFtdcTraderApi; while this cannot be created
with a “new”.
Function Prototype:

static CShfeFtdcTraderApi* CreateFtdcTraderApi(const char* pszFlowPath =
"");

Parameters:
pszFlowPath: Constant character pointer, used to point to a file catalog/directory that

stores the status of the bulletin/news sent by the Trading System. The default value is the
current catalog/location/directory.
Return Value:

This returns a pointer that point to an instance of the CShfeFtdcTraderApi.

2.2.2. GetVersion Method

This is to get the API version.
Function Prototype:

const char* GetVersion(int& nMajorVersion, int& nMinorVersion);

Parameters:
nMajorVersion: returns the main/primary version number
nMinorVersion: returns the minor version number

Return Value:
This returns a constant pointer that points to the versioning identification string.

2.2.3. Release Method

Release the internal resources of the current API instance, exit the API working thread,
and set the API exit signal (only sets the exit signal, does not release the instance).
Function Prototype:

Trading API & Market Data API Interface Specifications v2.00

111

int Release();

Return Value:
0, success
-9 indicates uninitialized.

2.2.4. Init Method

This is to establish the connection between the Member System and the Trading System.
After the connection is established, user can proceed to login.
Function Prototype:

int Init();

Return Value:
0, success
-5 indicates already logged in or repeated invocation.

2.2.5. Join Method

Blocks the API working thread. After the API exit signal is triggered, the current API
instance will be released.
Function Prototype:

int Join();

Return Value:
0, success

2.2.6. GetTradingDay Method

This is to get the current trading day. A correct value will only be retrieved after a
successful login to the Trading System.
Function Prototype:

const char* GetTradingDay();

Return Value:
This returns a constant pointer that points to the date information character string.

2.2.7. RegisterSpi Method

This is to register to an instance derived from CShfeFtdcTraderSpi instance class. This
instance would be used to complete events handling.
Function Prototype:

void RegisterSpi(CShfeFtdcTraderSpi* pSpi);

Trading API & Market Data API Interface Specifications v2.00

112

Parameters:
pSpi: realizes/implements the pointer for ShfeFtdcTraderSpi interface instance.

2.2.8. RegisterFront Method

Set the network communication address of the trading front server. The Trading System
has multiple trading front servers, and users can register multiple trading front server network
communication addresses simultaneously.
Function Prototype:

int RegisterFront(const char* pszFrontAddress);

Parameters:
pszFrontAddress: pointer to the trading front server’s network communication address.

The server address is in the format “protocol://ipaddress:port”, e.g. “tcp://127.0.0.1:17001”.
“tcp” in the instance is the transmission protocol, “127.0.0.1” represents the server address,
and “17001” represent s the server port number.
Return Value:

0, success
-8, indicates the number of registered front addresses exceeds the maximum value;
-10, indicates already initialized.

2.2.9. RegisterNameServer Method

Set the network communication address of the Trading System’s FENS service. The
Trading System has multiple FENS services, and users can register multiple FENS service
network communication addresses simultaneously.
Function Prototype:

int RegisterNameServer(const char* pszNsAddress);

Parameters:
pszNsAddress: pointer to the Trading System FENS service network communication

address. The network communication address is in the format “protocol://ipaddress:port”,
e.g. ”tcp://127.0.0.1:17001”. “tcp” in the instance is the transmission protocol, “127.0.0.1”
represents the server address, and “17001” represents the server port number.
Return Value:

0, success
-8, indicates the number of registered FENS service addresses exceeds the
maximum value;
-10, indicates already initialized.

2.2.10. SetHeartbeatTimeout Method

This is to set heartbeat timeout limit for network communication. After the connection
between TraderAPI and the TCP of the Trading System is established, it will send regular
heartbeat to detect whether the connection is functioning well. This method is used to set the

Trading API & Market Data API Interface Specifications v2.00

113

time for detecting heartbeat timeout. The Exchange recommends that member systems set
the timeout value between 10 and 30 seconds.
Function Prototype:

int SetHeartbeatTimeout(unsigned int timeout);

Parameters:
timeout: heartbeat timeout time limit (in seconds). If no information is received from the

Trading System for more than timeout/2 seconds, the OnHeartBeatWarning callback will be
triggered. If no information is received from the Trading System for more than timeout
seconds, the connection will be disconnected, triggering the OnFrontDisconnected callback.

Please refer to Part I Section 4.9 for the heartbeat mechanism

Return Value:
0, success
-10, indicates already initialized.

2.2.11. OpenRequestLog Method

This is to open the request log file. After this method is called, all request information
sent to the Trading System will be recorded in the specified log files.
Function Prototype:

int OpenRequestLog(const char* pszReqLogFileName);

Parameters:
pszReqLogFileName: the request log file name.

Return Value:
0, success
-4, indicates failure to open log file.

2.2.12. OpenResponseLog Method

This is to open the reply log file. After the method is called, all information returned
from the Trading System will be recorded in the specified log file, including reply message
and return message.
Function Prototype:

int OpenResponseLog(const char* pszRspLogFileName);

Parameters:
pszRspLogFileName: reply log file name.

Return Value:
0, success
-4, indicates failure to open log file.

2.2.13. SubscribePrivateTopic Method

Trading API & Market Data API Interface Specifications v2.00

114

This is to subscribe to member-specific private stream. After a successful subscription,
the Trading System will proactively send the member private stream or trader private stream
to the Member System based on subscription permissions.
Function Prototype:

int SubscribePrivateTopic(TERESUMETYPE nResumeType);

Parameters:
nResumeType:Member private stream retransmission mode:

TERT_RESTART: to re-transmit from current trading day
TERT_RESUME: resume from where it last left off. To ensure the integrity of
member trading data, the Exchange recommends using this mode to receive
the member private stream, and to process subsequent order business only
after restoring the member’s trading data for the day.
TERT_QUICK: to only transmit those post-current-login member-specific private
stream contents. To ensure the integrity of member trading data, the Exchange
does not recommend using this method to receive the private stream.

Return Value:
0, success
-10, indicates already initialized.

2.2.14. SubscribePublicTopic Method

This is to subscribe to public stream. After a successful subscription, the Trading System
will proactively send the public stream to the Member System.
Function Prototype:

int SubscribePublicTopic(TE_RESUME_TYPE nResumeType);

Parameters:
nResumeType: public stream re-transmission method types:

TERT_RESTART: to re-transmit from current trading day
TERT_RESUME: to re-transmit by resuming and continuing from last transmission
TERT_QUICK: to only transmit those post-current-login member-specific private
stream contents

Return Value:
■ 0, success
■ -10, indicates already initialized.

2.2.15. SubscribeUserTopic Method

This is to subscribe to trader-specific private stream. After a successful subscription, the
Trading System will proactively send the trader private stream to the Member System.
Function Prototype:

int SubscribeUserTopic(TE_RESUME_TYPE nResumeType);

Trading API & Market Data API Interface Specifications v2.00

115

Parameters:
nResumeType: Trader private stream retransmission mode,

TERT_RESTART: to re-transmit from current trading day
TERT_RESUME: resume from where it last left off. To ensure the integrity of
member trading data, the Exchange recommends using this mode to receive
the trader private stream, and to process subsequent order business only after
restoring both the member’s and the trader’s trading data for the day.
TERT_QUICK: only sends trader private stream content after login. The Exchange
does not recommend using this mode to receive trader private streams to
ensure the integrity of members’ trading data.

Return Value:
0, success
-10, indicates already initialized.

2.2.16. ReqUserLogin Method

User login request.
Function Prototype:

int ReqUserLogin(
CShfeFtdcReqUserLoginField* pReqUserLoginField,
int nRequestID);

Parameters:
pReqUserLoginField: pointer to the login request structure. The structure:
struct CShfeFtdcReqUserLoginField {

///Business day
TShfeFtdcDateType TradingDay;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Password
TShfeFtdcPasswordType Password;
///The user-end product information
TShfeFtdcProductInfoType UserProductInfo;
///The interface-port product information
TShfeFtdcProductInfoType InterfaceProductInfo;
///Protocol information
TShfeFtdcProtocolInfoType ProtocolInfo;
///Datacenter ID
TShfeFtdcDataCenterIDType DataCenterID;

};
User is required to fill the field of "UserProductInfo", i.e., product

information of Member System such as software developer and version number
For instance, “SFIT Trader V100” represents the trading program and version
number developed by technology firm.

nRequestID: returns the user login request ID; this ID is specified and managed by the
user.
Return Value:

Trading API & Market Data API Interface Specifications v2.00

116

0, success
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-5, indicates already logged in or repeated invocation;
-6, indicates a required field is empty1 (UserProductInfo not filled in);
-7, indicates authentication is enabled but authentication failed;
-9, indicates uninitialized;
-12, indicates connection to the front server has not yet been established.

2.2.17. ReqUserLogout Method

User logout request.
Function Prototype:

int ReqUserLogout(
CShfeFtdcReqUserLogoutField* pReqUserLogout,
int nRequestID);

Parameter:
pReqUserLogout: pointer to the logout request structure. The structure:
struct CShfeFtdcReqUserLogoutField {

///Trading User ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;

};
nRequestID: returns the user logout request ID; this ID is specified and managed by the

user.
Returned Value:

0, success
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding the transaction request flow control.

2.2.18. ReqUserPasswordUpdate Method

This is the user password update request.
Function Prototype:

int ReqUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
int nRequestID);

Parameter:
pUserPasswordUpdate: pointer to the user password modification structure. The

structure:

1 Note: Empty string definition: Strings containing only spaces or no characters; the same applies below.

Trading API & Market Data API Interface Specifications v2.00

117

struct CShfeFtdcUserPasswordUpdateField {
///Trading User ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Old Password
TShfeFtdcPasswordType OldPassword;
///New Password
TShfeFtdcPasswordType NewPassword;

};
nRequestID: returns the user password modification request ID; this ID is specified and

managed by the user.
Returned Value:

0, success
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding the transaction request flow control;
-13, indicates a member ID mismatch;
-14, indicates a user ID mismatch.

2.2.19. ReqSubscribeTopic Method

Topic subscription request. It will be called after successful login.
Function Prototype:

int ReqSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestID);

Parameter:
pDissemination: pointer to the subscribed topic structure, including topic to be

subscribed as well as the starting message sequence number. The structure:
struct CShfeFtdcDisseminationField {

///Sequence series number
TShfeFtdcSequenceSeriesType SequenceSeries;
///Sequence number
TShfeFtdcSequenceNoType SequenceNo;

};
SequenceSeries: topics to be subscribed
SequenceNo: A value less than 0 indicates using TERT_QUICK mode; other values

specify the sequence number to resume from
nRequestID: returns the user topic subscription request ID; this ID is specified and

managed by the user.
Returned Value:

0, success
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding the transaction request flow control.

Trading API & Market Data API Interface Specifications v2.00

118

2.2.20. ReqQryTopic Method

This is the request for querying topic/theme. It will be called after successful login.
Function Prototype:

int ReqQryTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestID);

Parameter:
pDissemination: pointer to the topic query structure, including topic to be queried. The

structure:
struct CShfeFtdcDisseminationField {

///Serial series number: Fill in the topic number to query
TShfeFtdcSequenceSeriesType SequenceSeries;
///Sequence number, unused field
TShfeFtdcSequenceNoType SequenceNo;

};
nRequestID: returns the user topic query request ID; this ID is specified and managed

by the user.
Returned Value:

0, success
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.21. ReqOrderInsert Method

Order entry request.
Function Prototype:

int ReqOrderInsert(
CShfeFtdcInputOrderField* pInputOrder,
int nRequestID);

Parameter:
pInputOrder: pointer to the order entry structure. The structure:
struct CShfeFtdcInputOrderField {

///Order number; this field will be returned by Trading System.
TShfeFtdcOrderSysIDType OrderSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Conditions of order price
TShfeFtdcOrderPriceTypeType OrderPriceType;

Trading API & Market Data API Interface Specifications v2.00

119

///Buy-sell direction
TShfeFtdcDirectionType Direction;
///Combination offset flag
TShfeFtdcCombOffsetFlagType CombOffsetFlag;
///Combination hedge flag
TShfeFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TShfeFtdcPriceType LimitPrice;
///Quantity
TShfeFtdcVolumeType VolumeTotalOriginal;
///Type of valid period
TShfeFtdcTimeConditionType TimeCondition;
///GTD DATE, not used
TShfeFtdcDateType GTDDate;
///Volume type;
TShfeFtdcVolumeConditionType VolumeCondition;
///The Min.volume, used when the VolumeCondition is set as “minimum quality”
TShfeFtdcVolumeType MinVolume;
///Trigger conditions
TShfeFtdcContingentConditionType ContingentCondition;
///Stop-loss price, not used
TShfeFtdcPriceType StopPrice;
///Reasons for forced closing-out
TShfeFtdcForceCloseReasonType ForceCloseReason;
///Local order number*
TShfeFtdcOrderLocalIDType OrderLocalID;
///Flag of auto-suspension
TShfeFtdcBoolType IsAutoSuspend;
///Business unit, not used
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};
* OrderLocalID: Local order identifier, must increment sequentially (compared as

strings). After each successful login, the maximum local order ID used for the seat on the
current day can be obtained from the MaxOrderLocalID field of the
CShfeFtdcRspUserLoginField output parameter in OnRspUserLogin.

nRequestID: returns the user order entry request ID; this ID is specified and managed
by the user. This ID can be reused within the same session.
Returned Value:

0, success
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (OrderLocalID is empty);

Trading API & Market Data API Interface Specifications v2.00

120

-11, indicates duplicate ID (OrderLocalID not incrementing as required2).
Business Description:

The current Trading System supports the following order types:
Price Condition
OrderPriceType

Time Condition
TimeCondition

Volume Condition
VolumeCondition

Trigger Condition
ContingentCondition

Limit Price Day Order Any Volume (AV) Immediate

Market Price

Limit Price Complete
immediately,
otherwise cancel

Any Volume (AV) Immediate

Minimum Volume (MV)

Market Price Fill-Or-Kill (CV)

2.2.22. ReqOrderAction Method

Order action requests, including order cancellation, suspension, activation, and
modification.
Function Prototype:

int ReqOrderAction(
CShfeFtdcOrderActionField* pOrderAction,
int nRequestID);

Parameter:
pOrderAction: pointer to the order operation structure. The structure:
struct CShfeFtdcOrderActionField {

///Order number*
TShfeFtdcOrderSysIDType OrderSysID;
///Local order number*
TShfeFtdcOrderLocalIDType OrderLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Price, not used
TShfeFtdcPriceType LimitPrice;
///Local number of operation*
TShfeFtdcOrderLocalIDType ActionLocalID;
///Change in quantity, not used
TShfeFtdcVolumeType VolumeChange;
///Business unit, not used
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address

2 Explanation of Incrementing: Requests involving local IDs share a common LocalID sequence. For non-empty
local ID strings, the LocalID sequence must increment; the same applies below.

Trading API & Market Data API Interface Specifications v2.00

121

TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};
* OrderSysID and OrderLocalID means that either of the target order to operated can

be filled.
* ActionLocalID: Local operation ID; if non-empty, must increment sequentially.

nRequestID: returns the user order action request ID; this ID is specified and managed
by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both OrderSysID and OrderLocalID are
empty);
-11, indicates duplicate ID (ActionLocalID not incrementing as required).

Business Description:
Order modification functionality is not currently supported.

2.2.23. ReqQuoteInsert Method

Quote entry request.
Function Prototype:

int ReqQuoteInsert(
CShfeFtdcInputQuoteField* pInputQuote,
int nRequestID);

Parameter:
pInputQuote: pointer to the quote entry structure. The structure:
struct CShfeFtdcInputQuoteField {

///Quote number,this field will be returned by Trading System.
TShfeFtdcQuoteSysIDType QuoteSysID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Quantity
TShfeFtdcVolumeType Volume;
///Contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Local quoto number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Business unit, not used
TShfeFtdcBusinessUnitType BusinessUnit;
///Buyer’s combination offset flag

Trading API & Market Data API Interface Specifications v2.00

122

TShfeFtdcCombOffsetFlagType BidCombOffsetFlag;
///Buyer’s combination hedge flag
TShfeFtdcCombHedgeFlagType BidCombHedgeFlag;
///Buyer’s price
TShfeFtdcPriceType BidPrice;
///Seller’s combination offset flag
TShfeFtdcCombOffsetFlagType AskCombOffsetFlag;
///Seller’s combination hedge flag
TShfeFtdcCombHedgeFlagType AskCombHedgeFlag;
///Seller’s price
TShfeFtdcPriceType AskPrice;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;
///Quote request ID
TShfeFtdcOrderSysIDType QuoteDemandID;

};

nRequestID: returns the user quote request ID; this ID is designated and managed by the
user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (QuoteLocalID is empty);
-11, indicates duplicate ID (QuoteLocalID not incrementing as required).

2.2.24. ReqQuoteAction Method

Quote action requests, including quote cancellation, suspension, activation, and
modification.
Function Prototype:

int ReqQuoteAction(
CShfeFtdcQuoteActionField* pQuoteAction,
int nRequestID);

Parameter:
pQuoteAction: pointer to the quote operation structure. The structure:
struct CShfeFtdcQuoteActionField {

///Quoto number
TShfeFtdcQuoteSysIDType QuoteSysID;
///Local quoto number
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;

Trading API & Market Data API Interface Specifications v2.00

123

///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local number of operation
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

nRequestID: returns the user quote request ID; this ID is designated and managed by the
user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both QuoteSysID and QuoteLocalID are
empty);
-11, indicates duplicate ID (ActionLocalID not incrementing as required).

Business Description:
Currently, only quote cancellation is supported.

2.2.25. ReqExecOrderInsert Method

Execution declaration entry request. Only option buyers are allowed to submit option
exercise requests.
Function Prototype:

int ReqExecOrderInsert(
CShfeFtdcInputExecOrderField* pInputExecOrder,
int nRequestID);

Parameter:
pInputExecOrder: pointer to the input option exercise structure. The structure:
struct CShfeFtdcInputExecOrderField {

///Contract number
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;

Trading API & Market Data API Interface Specifications v2.00

124

///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local option exercise number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Quantity
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///position direction, i.e. whether buyer(long position) or seller(short position)
made this application
TShfeFtdcPosiDirectionType PosiDirection;
///Flag indicating whether to retain futures positions after option exercise, not
used
TShfeFtdcExecOrderPositionFlagType ReservePositionFlag;
///Whether the futures positions generated after option exercise are self-hedged
TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

nRequestID: returns the user option exercise entry request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (ExecOrderLocalID is empty);
-11, indicates duplicate ID (ExecOrderLocalID not incrementing as required).

2.2.26. ReqExecOrderAction Method

Option exercise request.
Function Prototype:

int ReqExecOrderAction(
CShfeFtdcExecOrderActionField* pExecOrderAction,
int nRequestID);

Parameter:
pExecOrderAction: pointer to the option exercise operation structure. The structure:
struct CShfeFtdcExecOrderActionField {

///Option exercise number

Trading API & Market Data API Interface Specifications v2.00

125

TShfeFtdcExecOrderSysIDType ExecOrderSysID;
///Local option exercise number
TShfeFtdcOrderLocalIDType ExecOrderLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local number of operation
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Local business ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

nRequestID: returns the user option exercise action request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both ExecOrderSysID and
ExecOrderLocalID are empty);
-11, indicates duplicate ID (ActionLocalID not incrementing as required).

Business Description:
Currently, only option exercise cancellation is supported.

2.2.27. ReqQryPartAccount Method

Member funds query request.
Function Prototype:

int ReqQryPartAccount(
CShfeFtdcQryPartAccountField* pQryPartAccount,
int nRequestID);

Parameter:
pQryPartAccount: pointer to the member fund query structure. The structure:
struct CShfeFtdcQryPartAccountField {

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;

Trading API & Market Data API Interface Specifications v2.00

126

///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Fund account, optional
TShfeFtdcAccountIDType AccountID;

};

nRequestID: returns the user member funds query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.28. ReqQryOrder Method

This is for order query request.
Function Prototype:

int ReqQryOrder(
CShfeFtdcQryOrderField* pQryOrder,
int nRequestID);

Parameter:
pQryOrder: pointer to the order query structure. The query conditions are related. If an

optional query condition is empty, that query condition will be ignored. The structure:
struct CShfeFtdcQryOrderField {

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Order number, optional
TShfeFtdcOrderSysIDType OrderSysID;
///Contract ID, optional
TShfeFtdcInstrumentIDType InstrumentID;
///Client ID, optional
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID, optional
TShfeFtdcUserIDType UserID;
///The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional
TShfeFtdcTimeType TimeEnd;

};

nRequestID: returns the user order query request ID; this ID is specified and managed
by the user.
Returned Value:

0, successful
-1, indicates not logged in;

Trading API & Market Data API Interface Specifications v2.00

127

-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.29. ReqQryQuote Method

Quote request request.
Function Prototype:

int ReqQryQuote(
CShfeFtdcQryQuoteField* pQryQuote,
int nRequestID);

Parameter:
pQryQuote: pointer to the quote request structure. The structure:
struct CShfeFtdcQryQuoteField {

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Quote No, optional
TShfeFtdcQuoteSysIDType QuoteSysID;
///Client ID, optional
TShfeFtdcClientIDType ClientID;
///Contract ID, optional
TShfeFtdcInstrumentIDType InstrumentID;
///Transaction user’s ID, optional
TShfeFtdcUserIDType UserID;

};

nRequestID: returns the user quote request ID; this ID is designated and managed by the
user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.30. ReqQryTrade Method

This is the request for trade query (matched/filled order query).
Function Prototype:

int ReqQryTrade(
CShfeFtdcQryTradeField* pQryTrade,
int nRequestID);

Parameter:
pQryTrade: pointer to the trade query (i.e. filled/matched order) structure. The structure:
struct CShfeFtdcQryTradeField {

Trading API & Market Data API Interface Specifications v2.00

128

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///The starting contract ID, optional
TShfeFtdcInstrumentIDType InstIDStart;
///The ending contract ID, optional
TShfeFtdcInstrumentIDType InstIDEnd;
///Transaction number, optional
TShfeFtdcTradeIDType TradeID;
///Client ID, optional
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID, optional
TShfeFtdcUserIDType UserID;
///The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional
TShfeFtdcTimeType TimeEnd;

};

NRequestID: returns the user trade query request ID; this ID is specified and managed
by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.31. ReqQryClient Method

This is for member client query request.
Function Prototype:

int ReqQryClient(
CShfeFtdcQryClientField* pQryClient,
int nRequestID);

Parameter:
pQryClient: pointer to the client query structure. The structure:
struct CShfeFtdcQryClientField {

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///The starting client ID, optional
TShfeFtdcClientIDType ClientIDStart;
///The ending client ID, optional
TShfeFtdcClientIDType ClientIDEnd;

};

nRequestID: returns the user client query request ID; this ID is specified and managed

Trading API & Market Data API Interface Specifications v2.00

129

by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.32. ReqQryPartPosition Method

Member position query request.
Function Prototype:

int ReqQryPartPosition(
CShfeFtdcQryPartPositionField* pQryPartPosition,
int nRequestID);

Parameter:
pQryPartPosition: pointer to the member position query structure. The structure:
struct CShfeFtdcQryPartPositionField {

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///The starting contract ID, optional
TShfeFtdcInstrumentIDType InstIDStart;
///The ending contract ID, optional
TShfeFtdcInstrumentIDType InstIDEnd;

};

nRequestID: returns the user member position query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.33. ReqQryClientPosition Method

Client position query request.
Function Prototype:

int ReqQryClientPosition(
CShfeFtdcQryClientPositionField* pQryClientPosition,
int nRequestID);

Parameter:
pQryClientPosition: pointer to the client position query structure. The structure:
struct CShfeFtdcQryClientPositionField {

Trading API & Market Data API Interface Specifications v2.00

130

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///The starting client ID, optional
TShfeFtdcClientIDType ClientIDStart;
///The ending client ID, optional
TShfeFtdcClientIDType ClientIDEnd;
///The starting contract ID, optional
TShfeFtdcInstrumentIDType InstIDStart;
///The ending contract ID, optional
TShfeFtdcInstrumentIDType InstIDEnd;
///Type of client, optional
TShfeFtdcClientTypeType ClientType;

};

nRequestID: returns the user client position query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.34. ReqQryInstrument Method

Instrument/contract query request.
Function Prototype:

int ReqQryInstrument(
CShfeFtdcQryInstrumentField* pQryInstrument,
int nRequestID);

Parameter:
pQryInstrument: pointer to the contract query structure. The structure:
struct CShfeFtdcQryInstrumentField {

///Settlement group’s ID, optional
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Product suite’s ID, optional
TShfeFtdcProductGroupIDType ProductGroupID;
///Product ID, optional
TShfeFtdcProductIDType ProductID;
///Contract ID, optional
TShfeFtdcInstrumentIDType InstrumentID;

};

nRequestID: returns the user contract query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful

Trading API & Market Data API Interface Specifications v2.00

131

-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.35. ReqQryInstrumentStatus Method

Contract trading status query request.
Function Prototype:

int ReqQryInstrumentStatus(
CShfeFtdcQryInstrumentStatusField* pQryInstrumentStatus,
int nRequestID);

Parameter:
pQryInstrumentStatus: pointer to the contract trading status query structure. The

structure:
struct CShfeFtdcQryInstrumentStatusField {

///The starting contract ID, optional
TShfeFtdcInstrumentIDType InstIDStart;
///The ending contract ID, optional
TShfeFtdcInstrumentIDType InstIDEnd;

};

nRequestID: returns the user contract status query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.36. ReqQryMarketData Method

General market data query request.
Function Prototype:

int ReqQryMarketData(
CShfeFtdcQryMarketDataField* pQryMarketData,
int nRequestID);

Parameter:
pQryMarketData: pointer to the market data query structure. The structure:
struct CShfeFtdcQryMarketDataField {

///Product ID, optional
TShfeFtdcProductIDType ProductID;
///Contract ID, optional
TShfeFtdcInstrumentIDType InstrumentID

};

Trading API & Market Data API Interface Specifications v2.00

132

nRequestID: returns the user general market data query request ID; this ID is specified
and managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.37. ReqQryBulletin Method

Exchange bulletin query request.
Function Prototype:

int ReqQryBulletin(
CShfeFtdcQryBulletinField* pQryBulletin,
int nRequestID);

Parameter:
pQryBulletin: pointer to the Exchange announcement query structure. The structure:
struct CShfeFtdcQryBulletinField {

///Trading Day, Optional
TShfeFtdcDateType TradingDay;
///market ID, optional
TShfeFtdcMarketIDType MarketID;
///bulletin ID, optional
TShfeFtdcBulletinIDType BulletinID;
///bulletin type, optional
TShfeFtdcNewsTypeType NewsType;
///urgency level, optional
TShfeFtdcNewsUrgencyType NewsUrgency;

};

nRequestID: returns the user announcement query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.38. ReqQryHedgeVolume Method

Hedge quota query request.
Function Prototype:

int ReqQryHedgeVolume(
CShfeFtdcQryHedgeVolumeField* pQryHedgeVolume,
int nRequestID);

Trading API & Market Data API Interface Specifications v2.00

133

Parameter:
pQryHedgeVolume: pointer to the hedge quota query structure. The structure:
struct CshfeFtdcQryHedgeVolumeField {
{

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///The starting client ID, optional
TShfeFtdcClientIDType ClientIDStart;
///The ending client ID, optional
TShfeFtdcClientIDType ClientIDEnd;
///The starting contract ID, optional
TShfeFtdcInstrumentIDType InstIDStart;
///The ending contract ID, optional
TShfeFtdcInstrumentIDType InstIDEnd;

};

nRequestID: returns the user hedge quota query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

Business Description:
This feature is currently unsupported.

2.2.39. ReqQryExecOrder Method

Execution declaration query request.
Function Prototype:

int ReqQryExecOrder(
CShfeFtdcQryExecOrderField* pQryExecOrder,
int nRequestID);

Parameter:
pQryExecOrder: pointer to the option exercise query structure. The structure:
struct CShfeFtdcQryExecOrderField
{

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Option exercise number, optional
TShfeFtdcExecOrderSysIDType ExecOrderSysID;
///Contract ID, optional
TShfeFtdcInstrumentIDType InstrumentID;
///client ID, optional

Trading API & Market Data API Interface Specifications v2.00

134

TShfeFtdcClientIDType ClientID;
///transaction user’s ID, optional
TShfeFtdcUserIDType UserID;
///The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional
TShfeFtdcTimeType TimeEnd;

};

nRequestID: returns the user option exercise query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.40. ReqQryExchangeRate Method

This function is used to perform the exchange rate query.
Function Prototype:

int ReqQryExchangeRate(
CShfeFtdcQryExchangeRateField* pQryExchangeRate,
int nRequestID);

Parameter:
pQryExchangeRate: pointer to the exchange rate query structure. The structure:
struct CShfeFtdcQryExchangeRateField
{

///Currency ID
TShfeFtdcCurrencyIDType CurrencyID;

};

nRequestID: returns the user exchange rate query request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.41. ReqAbandonExecOrderInsert Method

Option abandonment entry request. Only option buyers have the right to abandon
exercise.
Function Prototype:

int ReqAbandonExecOrderInsert(

Trading API & Market Data API Interface Specifications v2.00

135

CShfeFtdcInputAbandonExecOrderField* pInputAbandonExecOrder,
int nRequestID);

Parameter:
pInputAbandonExecOrder: pointer to the option abandonment entry structure. The

structure:
struct CShfeFtdcInputAbandonExecOrderField {

///Contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Option abandonment local ID
TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Quantity
TShfeFtdcVolumeType Volume;
///Offset flag
TShfeFtdcOffsetFlagType OffsetFlag;
///Hedge flag
TShfeFtdcHedgeFlagType HedgeFlag;
///Position direction that apply for abandon, only long position could apply for
abandon actually
TShfeFtdcPosiDirectionType PosiDirection;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Business local ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

nRequestID: returns the user option abandonment entry request ID; this ID is specified
and managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (AbandonExecOrderLocalID is empty);
-11, indicates duplicate ID (AbandonExecOrderLocalID not incrementing as
required).

2.2.42. ReqAbandonExecOrderAction Method

Option abandonment request.

Trading API & Market Data API Interface Specifications v2.00

136

Function Prototype:
int ReqAbandonExecOrderAction(

CShfeFtdcAbandonExecOrderActionField* pAbandonExecOrderAction,
int nRequestID);

Parameter:
pAbandonExecOrderAction: pointer to the option abandonment structure. The

structure:
struct CShfeFtdcAbandonExecOrderActionField {

///Option abandonment ID
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///Option abandonment local ID
TShfeFtdcOrderLocalIDType AbandonExecOrderLocalID;
///Flag of order operation
TShfeFtdcActionFlagType ActionFlag;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Client ID
TShfeFtdcClientIDType ClientID;
///Transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local number of operation
TShfeFtdcOrderLocalIDType ActionLocalID;
///Business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///Business local ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

nRequestID: returns the user option abandonment action request ID; this ID is specified
and managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both AbandonExecOrderLocalID and
AbandonExecOrderSysID are empty);
-11, indicates duplicate ID (ActionLocalID not incrementing as required).

Business Description:
Currently, only abandon cancellation is supported.

2.2.43. ReqQryAbandonExecOrder Method

Request of option abandonment query.

Trading API & Market Data API Interface Specifications v2.00

137

Function Prototype:
int ReqQryAbandonExecOrder(

CShfeFtdcQryAbandonExecOrderField* pQryAbandonExecOrder,
int nRequestID);

Parameter:
pQryAbandonExecOrder: pointer to the option abandonment query structure. The

structure:
struct CShfeFtdcQryAbandonExecOrderField
{

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Option abandonment ID, optional
TShfeFtdcExecOrderSysIDType AbandonExecOrderSysID;
///Contract ID, optional
TShfeFtdcInstrumentIDType InstrumentID;
///client ID, optional
TShfeFtdcClientIDType ClientID;
///transaction user’s ID, optional
TShfeFtdcUserIDType UserID;
///The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional
TShfeFtdcTimeType TimeEnd;

};

nRequestID: returns the user option abandonment query request ID; this ID is specified
and managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.44. ReqQuoteDemand Method

Request of quote request entry.
Function Prototype:

int ReqQuoteDemand(
CShfeFtdcInputQuoteDemandField* pInputQuoteDemand,
int nRequestID);

Parameter:
pInputQuoteDemand: pointer to the quote demand entry request structure. The

structure:
struct CShfeFtdcInputQuoteDemandField

Trading API & Market Data API Interface Specifications v2.00

138

{
///member ID
TShfeFtdcParticipantIDType ParticipantID;
///client ID
TShfeFtdcClientIDType ClientID;
///transaction user’s ID
TShfeFtdcUserIDType UserID;
///contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///quote demand local input ID
TShfeFtdcOrderLocalIDType QuoteDemandLocalID;

};

nRequestID: returns the user quote demand entry request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (QuoteDemandLocalID is empty).

2.2.45. ReqOptionSelfCloseUpdate Method

Option self-hedge update request. Ordinary clients can apply for self-hedge option
positions; option sellers can apply for self-hedge futures positions arising from exercise; and
option market makers can apply to retain option positions. For option self-hedge updates, only
the latest request is kept for identical member, client, contract, and self-hedge type
combinations.
Function Prototype:

int ReqOptionSelfCloseUpdate(
CShfeFtdcInputOptionSelfCloseField* pInputOptionSelfClose,
int nRequestID);

Parameter:
pInputOptionSelfClose: pointer to the option self-hedge update structure. The structure:
struct CShfeFtdcInputOptionSelfCloseField {

///contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///member ID
TShfeFtdcParticipantIDType ParticipantID;
///client ID
TShfeFtdcClientIDType ClientID;
///transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Quantity
TShfeFtdcVolumeType Volume;

Trading API & Market Data API Interface Specifications v2.00

139

///Whether the futures position generated after option exercise is self-hedged
TShfeFtdcOptSelfCloseFlagType SelfCloseFlag;
///business unit
TShfeFtdcBusinessUnitType BusinessUnit;
///business local ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

nRequestID: returns the user option self-hedge update request ID; this ID is specified
and managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required field is empty (OptionSelfCloseLocalID is empty);
-11, indicates duplicate ID (OptionSelfCloseLocalID not incrementing as required).

2.2.46. ReqOptionSelfCloseAction Method

Option self-hedge action request.
Function Prototype:

int ReqOptionSelfCloseAction(
CShfeFtdcOptionSelfCloseActionField* pOptionSelfCloseAction,
int nRequestID);

Parameter:
pOptionSelfCloseAction: pointer to the option self-hedge operation structure. The

structure:
struct CShfeFtdcOptionSelfCloseActionField {

///Option self-hedge ID
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Local option self-hedge ID
TShfeFtdcOrderLocalIDType OptionSelfCloseLocalID;
///Option self-hedge operation flag
TShfeFtdcActionFlagType ActionFlag;
///member ID
TShfeFtdcParticipantIDType ParticipantID;
///client ID
TShfeFtdcClientIDType ClientID;
///transaction user’s ID
TShfeFtdcUserIDType UserID;
///Local number of operation
TShfeFtdcOrderLocalIDType ActionLocalID;
///business unit

Trading API & Market Data API Interface Specifications v2.00

140

TShfeFtdcBusinessUnitType BusinessUnit;
///business local ID
TShfeFtdcBusinessLocalIDType BusinessLocalID;
///IP address
TShfeFtdcIPAddressType IPAddress;
///Mac address
TShfeFtdcMacAddressType MacAddress;

};

nRequestID: returns the user option self-hedge action request ID; this ID is specified
and managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-6, indicates required fields are empty (both OptionSelfCloseLocalID and
OptionSelfCloseSysID are empty);
-11, indicates duplicate ID (ActionLocalID not incrementing as required).

Business Description:
Currently, only option self-hedge cancellations are supported.

2.2.47. ReqQryOptionSelfClose Method

Option self-hedge query request.
Function Prototype:

int ReqQryOptionSelfClose(
CShfeFtdcQryOptionSelfCloseField* pQryOptionSelfClose,
int nRequestID);

Parameter:
pQryOptionSelfClose: pointer to the option self-hedge query structure. The structure:
struct CShfeFtdcQryOptionSelfCloseField
{

///The starting member ID can only represent this member
TShfeFtdcParticipantIDType PartIDStart;
///The ending member ID can only represent this member
TShfeFtdcParticipantIDType PartIDEnd;
///Option self-hedge ID, optional
TShfeFtdcOptionSelfCloseSysIDType OptionSelfCloseSysID;
///Contract ID, optional
TShfeFtdcInstrumentIDType InstrumentID;
///client ID, optional
TShfeFtdcClientIDType ClientID;
///transaction user’s ID, optional
TShfeFtdcUserIDType UserID;
///The starting time, optional
TShfeFtdcTimeType TimeStart;
///The finishing time, optional

Trading API & Market Data API Interface Specifications v2.00

141

TShfeFtdcTimeType TimeEnd;
};

nRequestID: returns the user option self-hedge query request ID; this ID is specified
and managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding the pending query flow control;
-3, indicates exceeding the query request flow control.

2.2.48. ReqAuthenticate Method

This method is only for proprietary members and is used for authentication before
proprietary members collect trading terminal information.

Terminal authentication request.
Function Prototype:

int ReqAuthenticate(
CShfeFtdcProductAuthField* pProductAuth,
int nRequestID);

Parameter:
pProductAuth: pointer to the terminal product authentication information structure. The

structure:
struct CShfeFtdcProductAuthField
{

///Trading terminal name
TShfeFtdcProductInfoType AppID;
///Terminal authentication authorization ID
TShfeFtdcAuthIDType AuthID;

};

nRequestID: returns the user terminal product authentication information request ID;
this ID is specified and managed by the user.
Returned Value:

0, successful
-2, indicates exceeding in-transit transaction flow control;
-3, indicates exceeding transaction request flow control;
-5, indicates already logged in or duplicate invocation (not allowed after login or
repeated invocation);
-9, indicates uninitialized;
-12, indicates connection to the front server has not yet been established.

3. TraderAPI Interface Development Instances

// tradeapitest.cpp :

Trading API & Market Data API Interface Specifications v2.00

142

// A simple instance that describes the use of interface for CShfeFtdcTraderApi and
CShfeFtdcTraderSpi.
// This instance shows the process of order entry operation

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "FtdcTraderApi.h"

class CSimpleHandler : public CShfeFtdcTraderSpi
{
public:

// Constructed function that needs an effective pointer pointing to the
CShfeFtdcMduserApi instance

CSimpleHandler(CShfeFtdcTraderApi *pTraderApi) : m_pTraderApi(pTraderApi){}

~CSimpleHandler() {}

// Member System needs to complete the login step when it has created
communication connection with Trading System

virtual void OnFrontConnected()
{
CShfeFtdcReqUserLoginField reqUserLogin;
memset(&reqUserLogin, 0, sizeof(reqUserLogin));
strcpy(reqUserLogin.ParticipantID, "0888");
strcpy(reqUserLogin.UserID, "0888c1c");
strcpy(reqUserLogin.Password, "1");
strcpy(reqUserLogin.UserProductInfo, "Test TraderAPI v2.00");
// Send the login request
int ret = m_pTraderApi ->ReqUserLogin(&reqUserLogin, 0);
if (ret != 0)
{
printf("ReqUserLogin Fail ret = %d\n", ret);
exit(-1);

}
}

// This method will be called when Member System disconnect its communication with
Trading System

virtual void OnFrontDisconnected(int nReason)
{
// In this case, API will automatically conduct reconnection while Member System

may do nothing
printf("OnFrontDisconnected Reason = %#x.\n", nReason);

}

// After Member System sent the login request, this method will be called to notify
Member System of whether this login is successful or not

virtual void OnRspUserLogin(CShfeFtdcRspUserLoginField *pRspUserLogin,
CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast)

{
printf("OnRspUserLogin:\n");
printf("ErrorID=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);
printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);

Trading API & Market Data API Interface Specifications v2.00

143

if (pRspInfo->ErrorID != 0) {
// In case of login failure, Member System will be required to conduct the error-

processing
printf("Failed to login, errorID=%d errormsg=%s requestid=%d chain=%d",

pRspInfo->ErrorID, pRspInfo->ErrorMsg, nRequestID, bIsLast);
exit(-1);

}

// In case of successful login, the order entry request will be sent
CShfeFtdcInputOrderField ord;
memset(&ord, 0, sizeof(ord));

// Member ID
strcpy(ord.ParticipantID, "0888");
// Client ID
strcpy(ord.ClientID, "08880001");
// Transaction user’s ID
strcpy(ord.UserID, "0888c1c");
// Contract ID
strcpy(ord.InstrumentID, "cu2511");
// Conditions of order price
ord.OrderPriceType = SHFE_FTDC_OPT_LimitPrice;
// Buy-sell direction
ord.Direction = SHFE_FTDC_D_Buy;
// Combination offset flag
strcpy(ord.CombOffsetFlag, "0");
// Combination hedge flag
strcpy(ord.CombHedgeFlag, "1");
// Price
ord.LimitPrice = 74000;
// Quantity
ord.VolumeTotalOriginal = 10;
// Type of valid period
ord.TimeCondition = SHFE_FTDC_TC_GFD;
// GTD date
strcpy(ord.GTDDate, "");
// Volume type
ord.VolumeCondition = SHFE_FTDC_VC_AV;
// The Min.volume
ord.MinVolume = 0;
// Trigger conditions
ord.ContingentCondition = SHFE_FTDC_CC_Immediately;
// Stop-loss price
ord.StopPrice = 0;
// Reasons for forced closing-out
ord.ForceCloseReason = SHFE_FTDC_FCC_NotForceClose;
// Local order number
strcpy(ord.OrderLocalID, "0000000001");
// Flag of auto-suspension
ord.IsAutoSuspend = 0;

int ret = m_pTraderApi ->ReqOrderInsert(&ord, 1);
if (ret != 0)

Trading API & Market Data API Interface Specifications v2.00

144

{
printf("ReqOrderInsert Fail ret = %d\n", ret);
exit(-1);

}

}

// Response to order entry
virtual void OnRspOrderInsert(CShfeFtdcInputOrderField *pInputOrder,

CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast)
{
// Output of order entry result
printf("ErrorID=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);

// Order Entry Completed
exit(0);

};

///Return on order
virtual void OnRtnOrder(CShfeFtdcOrderField *pOrder)
{
printf("OnRtnOrder:\n");
printf("OrderSysID=[%s]\n", pOrder->OrderSysID);

}

// Notification on erroneous user request
virtual void OnRspError(CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast)

{
printf("OnRspError:\n");
printf("ErrorID=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);
printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);
// Member System is required to conduct error-processing
exit(-1);

}

private:
// Pointer pointing to the instance of CShfeFtdcMduserApi
CShfeFtdcTraderApi *m_pTraderApi;

};

int main()
{

// Generate an instance of CShfeFtdcTraderApi
CShfeFtdcTraderApi *pTraderApi =

CShfeFtdcTraderApi::CreateFtdcTraderApi();
// Generate an incident-handling instance
CSimpleHandler sh(pTraderApi);
// Register an incident-handling instance
pTraderApi->RegisterSpi(&sh);

// Subscription of private stream
pTraderApi->SubscribePrivateTopic(TERT_RESUME);

// Subscription of public stream

Trading API & Market Data API Interface Specifications v2.00

145

pTraderApi->SubscribePublicTopic(TERT_RESUME);

//Set the heartbeat timout period
pTraderApi->SetHeartbeatTimeout(19);

// Set the address of NameServer of Trading System front-end
pTraderApi->RegisterNameServer("tcp://172.16.0.31:17001");

// Enable Member System to create connection with Trading System
pTraderApi->Init();

// Releas of API instance
pTraderApi->Join();

return 0;
}

Trading API & Market Data API Interface Specifications v2.00

146

Part IIIMduserAPI Reference Manual

This section is primarily intended for market data receiving system developers, and
includes:

Chapter 1MduserAPI Interface Categories.
Chapter 2MduserAPI Interface Description.
Chapter 3MduserAPI Interface Development Instances.

Trading API & Market Data API Interface Specifications v2.00

147

1. Categories of MduserAPI Interfaces

1.1. Management Interfaces

The MduserAPI management interface is used to control the API lifecycle and runtime
parameters.
Interface Type Interface name Explanation

Lifecycle
Management
Interfaces

CShfeFtdcMduserApi:: CreateFtdcMduserApi Create an MduserApi instance
CShfeFtdcMduserApi::GetVersion Get API version

CShfeFtdcMduserApi:: Release
Delete the instance of the
interface

CShfeFtdcMduserApi:: Init Initialization

CShfeFtdcMduserApi:: Join
Wait for the Interface thread to
end the run

CShfeFtdcMduserApi::GetTradingDay Register to callback interface

Parameter
Management
Interfaces

CShfeFtdcMduserApi::RegisterSpi Register Front Address

CShfeFtdcMduserApi::RegisterFront
Register to NameServer Network
address

CShfeFtdcMduserApi::RegisterNameServer
Register to NameServer Network
address

CShfeFtdcMduserApi::SetHeartbeatTimeout Set the heartbeat timeout
Subscription
Interfaces

CShfeFtdcMduserApi::SubscribeMarketDataTopic Subscribe to market data

Logging
Interface

CShfeFtdcMduserApi::OpenRequestLog This is to open the request log file
CShfeFtdcMduserApi::OpenResponseLog This is to open the reply log file

Communication
Status

Interfaces

CShfeFtdcMduserSpi::OnFrontConnected
When communication with the
Trading System is established,
this method will be called

CShfeFtdcMduserSpi::OnFrontDisconnected
This method will be called when
communication with the Trading
System is disconnected

CShfeFtdcMduserSpi::OnHeartBeatWarning
The method is called when no
heartbeat message is received
after a long time

CShfeFtdcMduserSpi::OnPackageStart
Notification at the start of
message callbacks

CShfeFtdcMduserSpi::OnPackageEnd
Notification at the end of message
callbacks

Disaster
Recovery
Interface

CShfeFtdcMduserSpi::OnRtnFlowMessageCancel
Notification for data stream
cancellation

1.2. Service Interfaces

Service Type Service Request Interface / Response Interface Data Stream

Login-Logout

Login
CShfeFtdcMduserApi::ReqUserLogin
CShfeFtdcMduserSpi::OnRspUserLogin

Dialog Stream

Logout
CShfeFtdcMduserApi::ReqUserLogout
CShfeFtdcMduserSpi::OnRspUserLogout

Dialog Stream

Change user
password

CShfeFtdcMduserApi::ReqUserPasswordUpdate
CShfeFtdcMduserSpi::OnRspUserPasswordUpdate

Dialog Stream

Subscription Subscribe Topics CShfeFtdcMduserApi::ReqSubscribeTopic Dialog Stream

Trading API & Market Data API Interface Specifications v2.00

148

Service Type Service Request Interface / Response Interface Data Stream
CShfeFtdcMduserSpi::OnRspSubscribeTopic

Query Topics
CShfeFtdcMduserApi::ReqQryTopic
CShfeFtdcMduserSpi::OnRspQryTopic

Query Streams

Market Data
Market Data
Notification

CShfeFtdcMduserSpi::OnRtnDepthMarketData
Market Data
Stream

Error Response Error Response CShfeFtdcMduserSpi::OnRspError
Dialogue
Streams

Trading API & Market Data API Interface Specifications v2.00

149

2. MduserAPI Interface Description

2.1. CShfeFtdcMduserSpi Interface

The CShfeFtdcMduserSpi implements the event notification interface. Users must
derive the CShfeFtdcMduserSpi interface and write event-handling methods to process the
required events.

2.1.1. OnFrontConnected Method

When the market data receiving system establishes a TCP virtual link (connection) with
the Trading System, this method will be called. The connection is automatically established
by the API.
Function Prototype:

void OnFrontConnected();

Note: Calling OnFrontConnected only indicates that the TCP connection is successful.
The market data receiving system must perform login operations to conduct subsequent
business activities.

2.1.2. OnFrontDisconnected Method

When the communication link between the market data receiving system and the Trading
System is disconnected, this method will be called. Upon disconnection, the API will
automatically reconnect. The reconnection address may be the originally registered address or
another available communication address supported by the system, which is selected
automatically by the program.
Function Prototype:

void OnFrontDisconnected(int nReason);

Parameter:
nReason: disconnection reasons

0x1001, indicates network read failure;
0x1002, indicates network write failure;
0x2001, indicates heartbeat timeout;
0x2002, indicates message encryption failure;
0x2003, indicates message decryption failure;
0x2004, indicates receipt of a message from an unsubscribed topic;
0x2005, indicates discontinuity in received message sequence numbers;
0x2006, indicates illegal message length;
0x2007, indicates message conversion error;
0x2008, indicates login error with front-end service.

2.1.3. OnHeartBeatWarning Method

Trading API & Market Data API Interface Specifications v2.00

150

Heartbeat timeout warning. This method is invoked when no message is received for a
prolonged period. The default timeout warning threshold is 5 seconds. If
SetHeartbeatTimeout (unsigned int timeout) has been called to set a custom heartbeat timeout,
the warning time is timeout/2.
Function Prototype:

void OnHeartBeatWarning(int nTimeLapse);

Parameter:
nTimeLapse: time lapse from last time receiving the message (in seconds)

2.1.4. OnPackageStart Method

Message callback start notification. When the API receives a message belonging to the
market data stream, this method will be called first, followed by individual data field
callbacks, and finally the message callback end notification.
Function Prototype:

void OnPackageStart(int nTopicID, int nSequenceNo);

Parameter:
nTopicID: Topic ID (e.g., market data topic 1001).
nSequenceNo:Message Sequence Number

2.1.5. OnPackageEnd Method

Message callback end notification. When the API receives a message belonging to the
market data stream, it first calls the message callback start notification, followed by individual
data field callbacks, and finally this method.
Function Prototype:

void OnPackageEnd(int nTopicID, int nSequenceNo);

Parameter:
nTopicID: Topic (e.g., market data topic 1001).
nSequenceNo:Message Sequence Number

2.1.6. OnRspUserLogin Method

After the Market Data Receiving System sends out login request, and when the Trading
System sends back the response, the Trading System will call this method to inform the
Market Data Receiving System whether the login is successful.
Function Prototype:

void OnRspUserLogin(
CShfeFtdcRspUserLoginField* pRspUserLogin,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,

Trading API & Market Data API Interface Specifications v2.00

151

bool bIsLast);

Parameter:
pRspUserLogin: pointer to the user login information structure. The structure:
struct CShfeFtdcRspUserLoginField {

///trading day
TShfeFtdcDateType TradingDay;
///successful login time
TShfeFtdcTimeType LoginTime;
///Maximum local order number, not used
TShfeFtdcOrderLocalIDType MaxOrderLocalID;
///Trading User ID
TShfeFtdcUserIDType UserID;
///Exchange Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Trading System Name
TShfeFtdcTradingSystemNameType TradingSystemName;
///Data Center ID
TShfeFtdcDataCenterIDType DataCenterID;
///Current length of member private stream, not used
TShfeFtdcSequenceNoType PrivateFlowSize;
///Current length of trader private stream, not used
TShfeFtdcSequenceNoType UserFlowSize;
///action day
TShfeFtdcDateType ActionDay;};

pRspInfo: returns the user response information structure. Error ID of 0 indicates
success, and the same for subsequent descriptions. The response information structure:

struct CShfeFtdcRspInfoField {
///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
3 Member cannot be found Member ID is wrong when logging in
45 Settlement group initialization

status is incorrect
Trading System initialization is not completed, may try
later

59 User multiple login The trading user has logged in already
60 Wrong user ID or password User ID or password is wrong
62 User account locked Trading System locked the trader’s account
64 User is not belong to the Member Member ID is wrong
65 Wrong login IP address The computer used to login does not have the IP

address allowed by SHFE
75 Front-end inactive Trading System front-end inactive
106 Duplicate session Multiple logins using the same session
135 User authentication failed User key verification failed
136 User has no permission for direct

front-end connection
User has no permission for direct front-end connection

nRequestID: returns the user login request ID; this ID is specified by the user upon
login

Trading API & Market Data API Interface Specifications v2.00

152

bIsLast: indicates whether current return is the last return with respect to the
nRequestID

2.1.7. OnRspUserLogout Method

This method will be called when the Trading System returns a response after the Market
Data Receiving System sends a logout request, indicating whether logout was successful.
Function Prototype:

void OnRspUserLogout(
CShfeFtdcRspUserLogoutField* pRspUserLogout,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pRspUserLogout: returns the user logout information structure. The structure:
struct CShfeFtdcRspUserLogoutField {

///transaction user’s ID
TShfeFtdcUserIDType UserID;
///Memebr ID
TShfeFtdcParticipantIDType ParticipantID;

};

pRspInfo: returns the user response information structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
45 Settlement group initialization

status incorrect
Initialization of Trading System is not completed,
please try later

66 User not logged in yet User has not logged in yet
67 Not logged in with this user ID User logging out is not the same as the one logged in
68 Not logged in with this Memebr

ID
Member logging out is not the same as the one logged
in

nRequestID: returns the user logout request ID; this ID is specified by the user upon
logout

bIsLast: indicates whether current return is the last return with respect to the
nRequestID

2.1.8. OnRspSubscribeTopic Method

Subscription topic response. This method will be called when the Trading System returns
a response after the Market Data Receiving System sends a subscription topic instruction.
Function Prototype:

Trading API & Market Data API Interface Specifications v2.00

153

void OnRspSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pDissemination: pointer to the subscription topic structure, including topic subscribed

and starting message sequence number. The structure:
struct CShfeFtdcDisseminationField {

///sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;
///sequence number
TShfeFtdcSequenceNoType SequenceNo;

};

pRspInfo: pointer to the response information structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
1 Invalid session or topic does not

exist
The topic does not exist or the user lacks the necessary
subscription permission

nRequestID: returns the user subscription topic request ID; this ID is specified by the
user upon subscription.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.9. OnRspQryTopic Method

Query topic response. This method will be called when the Trading System returns a
response after the Market Data Receiving System issues a query topic instruction.
Function Prototype:

void OnRspQryTopic(
CShfeFtdcDisseminationField* pDissemination,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pDissemination: pointer to the query topic structure, including the topic to be queried

and the number of messages related to that topic. The structure:
struct CShfeFtdcDisseminationField {

///sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;

Trading API & Market Data API Interface Specifications v2.00

154

///sequence number
TShfeFtdcSequenceNoType SequenceNo;

};

pRspInfo: pointer to the response information structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error Message
TShfeFtdcErrorMsgType ErrorMsg;

};

nRequestID: returns the user query topic request ID; this ID is specified by the user
upon subscription to the topic.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.10. OnRspError Method

Error notification for user requests.
Function Prototype:

void OnRspError(
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pRspInfo: pointer to the response information structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error message
TShfeFtdcErrorMsgType ErrorMsg;

};
Possible errors:
Error ID Error message Possible cause
1 Not Login Not yet logged in

Too High FTD Version FTD version too high
Unrecognized ftd tid FTD message header error

151 Version verification failed Market data API version verification failed
997 api authentication failure Illegal API access

api crypt info failure Query for encrypted information not completed

nRequestID: returns the user operation request ID; this ID is specified by the user upon
making an operation request.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.1.11. OnRtnDepthMarketData Method

Trading API & Market Data API Interface Specifications v2.00

155

Market data notification. This method will be called when the Trading System notifies
the Market Data Receiving System of market data changes.
Function Prototype:

void OnRtnDepthMarketData(
CShfeFtdcDepthMarketDataField* pDepthMarketData);

Parameter:
pDepthMarketData: pointer to the market data structure. Note: For level-1 quotes,

some fields (such as bid2-bid5, ask2-ask5) are meaningless. The market data structure:
struct CShfeFtdcDepthMarketDataField
{

///Business day
TShfeFtdcDateType TradingDay;
///Settlement group’s ID
TShfeFtdcSettlementGroupIDType SettlementGroupID;
///Settlement number
TShfeFtdcSettlementIDType SettlementID;
///Latest price
TShfeFtdcPriceType LastPrice;
///Yesterday’s settlement
TShfeFtdcPriceType PreSettlementPrice;
///Yesterday’s close
TShfeFtdcPriceType PreClosePrice;
///Yesterday’s open interest
TShfeFtdcLargeVolumeType PreOpenInterest;
///Today’s open
TShfeFtdcPriceType OpenPrice;
///The highest price
TShfeFtdcPriceType HighestPrice;
///The lowest price
TShfeFtdcPriceType LowestPrice;
///Quantity
TShfeFtdcVolumeType Volume;
///Turnover
TShfeFtdcMoneyType Turnover;
///Open Interest
TShfeFtdcLargeVolumeType OpenInterest;
///Today’s close
TShfeFtdcPriceType ClosePrice;
///Today’s settlement
TShfeFtdcPriceType SettlementPrice;
///The upward price limit
TShfeFtdcPriceType UpperLimitPrice;
///The downward price limit
TShfeFtdcPriceType LowerLimitPrice;
///Yesterday’s Delta value
TShfeFtdcRatioType PreDelta;
///Today’s Delta value
TShfeFtdcRatioType CurrDelta;
///Last modification time
TShfeFtdcTimeType UpdateTime;
///The last modified millisecond
TShfeFtdcMillisecType UpdateMillisec;

Trading API & Market Data API Interface Specifications v2.00

156

///Contract ID
TShfeFtdcInstrumentIDType InstrumentID;
///Bid price 1
TShfeFtdcPriceType BidPrice1;
///Bid volume 1
TShfeFtdcVolumeType BidVolume1;
///Ask price 1
TShfeFtdcPriceType AskPrice1;
///Ask volume 1
TShfeFtdcVolumeType AskVolume1;
///Bid price 2
TShfeFtdcPriceType BidPrice2;
///Bid volume 2
TShfeFtdcVolumeType BidVolume2;
///Ask price 2
TShfeFtdcPriceType AskPrice2;
///Ask volume 2
TShfeFtdcVolumeType AskVolume2;
///Bid price 3
TShfeFtdcPriceType BidPrice3;
///Bid volume 3
TShfeFtdcVolumeType BidVolume3;
///Ask price 3
TShfeFtdcPriceType AskPrice3;
///Ask volume 3
TShfeFtdcVolumeType AskVolume3;
///Bid price 4
TShfeFtdcPriceType BidPrice4;
///Bid volume 4
TShfeFtdcVolumeType BidVolume4;
///Ask price 4
TShfeFtdcPriceType AskPrice4;
///Ask volume 4
TShfeFtdcVolumeType AskVolume4;
///Bid price 5
TShfeFtdcPriceType BidPrice5;
///Bid volume 5
TShfeFtdcVolumeType BidVolume5;
///Ask price 5
TShfeFtdcPriceType AskPrice5;
///Ask price 5
TShfeFtdcVolumeType AskVolume5;
///Action day
TShfeFtdcDateType ActionDay;

};

2.1.12. OnRtnFlowMessageCancel Method

Data stream rollback notification. After the Trading System undergoes a disaster
recovery switch and when the user logs back into the Trading System and subscribes to a
specific data stream, the Trading System will proactively notify the Market Data Receiving
System that certain messages in the data stream have been invalidated or canceled. At this

Trading API & Market Data API Interface Specifications v2.00

157

time, this method will be called.
Function Prototype:

void OnRtnFlowMessageCancel(
CShfeFtdcFlowMessageCancelField* pFlowMessageCancel);

Parameter:
pFlowMessageCancel: pointer to the data stream rollback structure. The structure:
struct CShfeFtdcFlowMessageCancelField
{

///Sequence Series
TShfeFtdcSequenceSeriesType SequenceSeries;
///Trading Day
TShfeFtdcDateType TradingDay;
///Data Center ID
TShfeFtdcDataCenterIDType DataCenterID;
///Start Sequence number
TShfeFtdcSequenceNoType StartSequenceNo;
///End Sequence number
TShfeFtdcSequenceNoType EndSequenceNo;

};
SequenceSeries: the data stream series to be canceled (private stream or public

stream)
The messages to be canceled is between: (StartSequenceNo,EndSequenceNo)

2.1.13. OnRspUserPasswordUpdate Method

User password update response. This method will be called when the Trading System
returns a response after the Market Data Receiving System issues a user password update
command.
Function Prototype:

void OnRspUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
CShfeFtdcRspInfoField* pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pUserPasswordUpdate: pointer to the user password update structure, including the

input data of the user password update request. The user password update structure:
struct CShfeFtdcUserPasswordUpdateField {

///transaction user’s ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;
///Old Password
TShfeFtdcPasswordType OldPassword;
///New Password
TShfeFtdcPasswordType NewPassword;

};

Trading API & Market Data API Interface Specifications v2.00

158

pRspInfo: pointer to the response message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID
TShfeFtdcErrorIDType ErrorID;
///Error Message
TShfeFtdcErrorMsgType ErrorMsg;

};

nRequestID: returns the user password update request ID; this ID is specified by the
user during the update.

bIsLast: indicates whether current return is the last return with respect to the
nRequestID.

2.2. CShfeFtdcMduserApi Interfaces

Functions offered by CShfeFtdcMduserApi interfaces include login/logout, market data
subscription, etc.

2.2.1. CreateFtdcMduserApi Method

This is to create an instance of the CShfeFtdcMduserApi; this cannot be created with a
“new”.
Function Prototype:

static CShfeFtdcMduserApi* CreateFtdcMduserApi(const char* pszFlowPath
= "");

Parameter:
pszFlowPath: constant character pointer, used to point to a file catalog/directory that

stores the status of the bulletin/news sent by the Trading System. The default value is the
current directory.
Returned Value:

returns a pointer to an instance of the CShfeFtdcMduserApi.

2.2.2. GetVersion Method

This is to get the API version.
Function Prototype:

const char* GetVersion(int& nMajorVersion, int& nMinorVersion);

Parameter:
nMajorVersion: returns the major version number
nMinorVersion: returns the minor version number

Returned Value:
returns a constant pointer to the version identifier string.

Trading API & Market Data API Interface Specifications v2.00

159

2.2.3. Release Method

Release the internal resources of the current API instance, exit the API working thread,
and set the API exit signal (only sets the exit signal, does not release the instance).
Function Prototype:

int Release();

Returned Value:
0, successful
-9 indicates uninitialized.

2.2.4. Init Method

This is to establish the connection between Market Data Receiving System and the
Trading System. After the connection is established, users can proceed to login.
Function Prototype:

int Init();

Returned Value:
0, successful
-5 indicates already logged in or repeated invocation.

2.2.5. Join Method

Blocks the API working thread. After the API exit signal is triggered, the current API
instance will be released.
Function Prototype:

int Join();

Returned Value:
0, successful

2.2.6. GetTradingDay Method

This is to get the current trading day. Only after successfully login to the Trading System,
the correct value would be obtained.
Function Prototype:

const char* GetTradingDay();

Returned Value:
Returns a constant pointer to the date information character string.

2.2.7. RegisterSpi Method

Trading API & Market Data API Interface Specifications v2.00

160

This is to register an instance derived from CShfeFtdcMduserSpi instance class. This
instance would be used to complete events handling.
Function Prototype:

void RegisterSpi(CShfeFtdcMduserSpi* pSpi);

Parameter:
pSpi: pointer to an instance that implements the CShfeFtdcMduserSpi interface.

2.2.8. RegisterFront Method

Set the network communication address of market data front-ends. The Trading System
supports multiple market data front-ends, and users can register the network communication
addresses of multiple front-ends simultaneously.
Function Prototype:

int RegisterFront(const char* pszFrontAddress);

Parameter:
pszFrontAddress: pointer to the network communication address of market data front-

ends. The server address is in the format “protocol://ipaddress:port”, e.g.
“tcp://127.0.0.1:17001”. “tcp” in the instance is the transmission protocol, “127.0.0.1”
represents the server address, and “17001” represents the server port number.
Returned Value:

0, successful
-8, indicates the number of registered front addresses exceeds the maximum value;
-10, indicates already initialized.

2.2.9. RegisterNameServer Method

Set the network communication address of the Trading System’s FENS service. The
Trading System has multiple FENS services, and users can register multiple FENS service
network communication addresses simultaneously.
Function Prototype:

int RegisterNameServer(const char* pszNsAddress);

Parameter:
pszNsAddress: pointer to the Trading System FENS service network communication

address. The network communication address is in the format “protocol://ipaddress:port”, e.g.
“tcp://127.0.0.1:17001”. “tcp” in the instance is the transmission protocol, “127.0.0.1”
represents the server address, and “17001” represents the server port number.
Returned Value:

0, successful
-8, indicates the number of registered FENS service addresses exceeds the
maximum value;
-10, indicates already initialized.

Trading API & Market Data API Interface Specifications v2.00

161

2.2.10. SetHeartbeatTimeout Method

Set the heartbeat timeout limit for network communication. When the MduserAPI
establishes a TCP connection with the Trading System, the connection will periodically send
heartbeats to check the connection status. This method is used to set the time for the detecting
heartbeat timeout. The Exchange recommends that the Market Data Receiving System set
the timeout value to between 10 and 30 seconds.
Function Prototype:

int SetHeartbeatTimeout(unsigned int timeout);

Parameter:
timeout: heartbeat timeout time limit (in seconds). If no information is received from the

Trading System for more than timeout/2 seconds, the OnHeartBeatWarning callback will be
triggered. If no information is received from the Trading System for more than timeout
seconds, the connection will be disconnected, triggering the OnFrontDisconnected callback.
Returned Value:

0, successful
-10, indicates already initialized.

2.2.11. OpenRequestLog Method

Open the request log file. After this method is called, all request messages sent to the Trading
System will be recorded in the specified log file.
Function Prototype:

int OpenRequestLog(const char* pszReqLogFileName);

Parameter:
pszReqLogFileName: the request log file name.

Returned Value:
0, successful
-4, indicates log file opening failed

2.2.12. OpenResponseLog Method

Open the reply log file. After this method is called, all information returned from the
Trading System will be recorded in the specified log file, including reply message and return
message.
Function Prototype:

int OpenResponseLog(const char* pszRspLogFileName);

Parameter:
pszRspLogFileName: reply log file name.

Returned Value:
0, successful

Trading API & Market Data API Interface Specifications v2.00

162

-4, indicates log file opening failed;

2.2.13. SubscribeMarketDataTopic Method

Subscribe to market data. After subscription, the Trading System will proactively send
market data notifications to the Market Data Receiving System.
Function Prototype:

int SubscribeMarketDataTopic(int nTopicID, TE_RESUME_TYPE
nResumeType);

Parameter:
nTopicID: The topic ID of the market data to be subscribed, as published by the

Exchange.
NResumeType:Market data re-transmission method type:

TERT_RESTART: to re-transmit from current trading day
TERT_RESUME: to re-transmit by resuming and continuing from last transmission
TERT_QUICK: first transmit the market data snapshot, and then transmit all market
data after that. The Exchange recommends that members use this method to
recover market data quickly.

Returned Value:
0, successful
-8, indicates the number of subscribed market data topics exceeds the maximum
limit;
-10, indicates already initialized.

2.2.14. ReqUserLogin Method

User login request.
Function Prototype:

int ReqUserLogin(
CShfeFtdcReqUserLoginField* pReqUserLoginField,
int nRequestID);

Parameter:
pReqUserLoginField: pointer to the user login request structure. The structure:
struct CShfeFtdcReqUserLoginField {

///trading day
TShfeFtdcDateType TradingDay;
///transaction user’s ID
TShfeFtdcUserIDType UserID;
///member ID
TShfeFtdcParticipantIDType ParticipantID;
///Password
TShfeFtdcPasswordType Password;
///The user-end product information
TShfeFtdcProductInfoType UserProductInfo;
///The interface-port product information

Trading API & Market Data API Interface Specifications v2.00

163

TShfeFtdcProductInfoType InterfaceProductInfo;
///Protocol information
TShfeFtdcProtocolInfoType ProtocolInfo;
///Datacenter ID
TShfeFtdcDataCenterIDType DataCenterID;

};
Users must fill in the UserProductInfo field, which specifies the market data

receiving system’s product information (e.g., software developer, version
number). For instance: "SFIT Mduser V100" represents a market data receiving
program and version developed by a technology company.

nRequestID: returns the user login request ID; this ID is specified and managed by the
user.
Returned Value:

0, successful
-2, Exceeded in-transit market data flow control;
-3, Exceeded market data request flow control;
-5, Already logged in;
-6, Mandatory field is empty (UserProductInfo not provided);
-9, indicates uninitialized;
-12, Connection to front-end not yet established.

2.2.15. ReqUserLogout Method

User logout request.
Function Prototype:

int ReqUserLogout(
CShfeFtdcReqUserLogoutField* pReqUserLogout,
int nRequestID);

Parameter:
pReqUserLogout: pointer to the user logout request structure. The structure:
struct CShfeFtdcReqUserLogoutField {

///Trading User ID
TShfeFtdcUserIDType UserID;
///Member ID
TShfeFtdcParticipantIDType ParticipantID;

};

nRequestID: returns the user logout request ID; this ID is specified and managed by the
user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit market data flow control;
-3, indicates exceeding market data request flow control.

2.2.16. ReqSubscribeTopic Method

Trading API & Market Data API Interface Specifications v2.00

164

Subscribed topic request.
Function Prototype:

int ReqSubscribeTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestID);

Parameter:
pDissemination: pointer to the subscribed topic structure, including topic to be

subscribed as well as the starting message sequence number. The structure:
struct CShfeFtdcDisseminationField {

///sequence series
TShfeFtdcSequenceSeriesType SequenceSeries;
///sequence number
TShfeFtdcSequenceNoType SequenceNo;

};
SequenceSeries: topics to be subscribed
SequenceNo: ＜0 to re-transmit using the “QUICK” method

nRequestID: returns the user subscribed topic request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit market data flow control;
-3, indicates exceeding market data request flow control;
-8, indicates the number of subscribed market data topics exceeding the limit.

2.2.17. ReqQryTopic Method

This is the request for querying topic.
Function Prototype:

int ReqQryTopic(
CShfeFtdcDisseminationField* pDissemination,
int nRequestID);

Parameter:
pDissemination: pointer to the query topic structure, including topic to be queried. The

structure:
struct CShfeFtdcDisseminationField {

///Serial series number: Fill in the topic number to query
TShfeFtdcSequenceSeriesType SequenceSeries;
///Sequence number, unused field
TShfeFtdcSequenceNoType SequenceNo;

};

nRequestID: returns the user query topic request ID; this ID is specified and managed

Trading API & Market Data API Interface Specifications v2.00

165

by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit market data flow control;
-3, indicates exceeding market data request flow control.

2.2.18. ReqUserPasswordUpdate Method

User password update request.
Function Prototype:

int ReqUserPasswordUpdate(
CShfeFtdcUserPasswordUpdateField* pUserPasswordUpdate,
int nRequestID);

Parameter:
pUserPasswordUpdate: pointer to the user password update structure. The structure:
struct CShfeFtdcUserPasswordUpdateField {

///transaction user’s ID
TShfeFtdcUserIDType UserID;
///member ID
TShfeFtdcParticipantIDType ParticipantID;
///Old Password
TShfeFtdcPasswordType OldPassword;
///New Password
TShfeFtdcPasswordType NewPassword;

};

nRequestID: returns the user password update request ID; this ID is specified and
managed by the user.
Returned Value:

0, successful
-1, indicates not logged in;
-2, indicates exceeding in-transit market data flow control;
-3, indicates exceeding market data request flow control;
-13, indicates a member ID mismatch;
-14, indicates a user ID mismatch.

Business Description:
This feature is not supported in the current version.

Trading API & Market Data API Interface Specifications v2.00

166

3. MduserAPI Interface Development Instance

// mdusertest.cpp :
// A simple instance that describes the use of interface for CShfeFtdcTraderApi and
CShfeFtdcTraderSpi.
// When a market data field value equals DBL_MAX (1.7976931348623157e+308), it
actually indicates a null field
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include "FtdcMduserApi.h"

class CSimpleHandler : public CShfeFtdcMduserSpi
{
public:

// Constructed function that needs an effective pointer pointing to the
CShfeFtdcMduserApi instance

CSimpleHandler(CShfeFtdcMduserApi *pMduserApi) : m_pMduserApi(pMduserApi) {}

~CSimpleHandler() {}

// After the market data receiving system establishes a communication connection with
the Trading System, it must log in

void OnFrontConnected()
{

CShfeFtdcReqUserLoginField reqUserLogin;
memset(&reqUserLogin, 0, sizeof(reqUserLogin));
strcpy(reqUserLogin.ParticipantID, "0888");
strcpy(reqUserLogin.UserID, "0888c1c");
strcpy(reqUserLogin.Password, "1");
strcpy(reqUserLogin.UserProductInfo, "TestMduserAPI V2.00");
//Send login request
int ret = m_pMduserApi ->ReqUserLogin(&reqUserLogin, 0);
if (ret != 0)
{

printf("ReqUserLogin Fail ret = %d\n", ret);
}

}

// When the communication connection between Market Data Receiving System and
the Trading System is interrupted, this method will be called

void OnFrontDisconnected(int nReason) {
// When disconnection happens, API would re-connect automatically, and the

Market Data Receiving System does not need to handle
printf("OnFrontDisconnected Reason = %#x.\n", nReason);

}

// This method will be called after the Trading System returns a login response to
indicate whether the login was successful

void OnRspUserLogin(CShfeFtdcRspUserLoginField *pRspUserLogin,
CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast) {

printf("OnRspUserLogin: ErrorID=[%d], ErrorMsg=[%s]\n",
pRspInfo->ErrorID, pRspInfo->ErrorMsg);

Trading API & Market Data API Interface Specifications v2.00

167

printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);
if (pRspInfo->ErrorID != 0) {

// Login failed. Error handling is required
printf("Failed to login, errorID=%d errormsg=%s requestid=%d chain=%d",

pRspInfo->ErrorID, pRspInfo->ErrorMsg, nRequestID, bIsLast);
}

}

// Depth market data notification, and the Trading System would inform automatically
void OnRtnDepthMarketData(CShfeFtdcDepthMarketDataField *pMarketData) {

// Quotion Receiving System would deal with the returned data based on its own
need

if(pMarketData->OpenPrice!=DBL_MAX)
{

printf(“OpenPrice=%.2f\n”,pMarketData->OpenPrice);
}

}

// Error notification with respect to user request
void OnRspError(CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast) {
printf("OnRspError:\n");
printf("ErrorID=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);
printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);
// Market Data Receiving System would need to do error handling
}

private:
// Pointer to an instance of CShfeFtdcMduserApi
CShfeFtdcMduserApi *m_pMduserApi;

};

int main()
{

// Create an instance of CShfeFtdcTraderApi
CShfeFtdcMduserApi *pMduserApi = CShfeFtdcMduserApi::CreateFtdcMduserApi();
// Create an instance of event handling
CSimpleHandler sh(pMduserApi);
// Register to an instance of event handling
pMduserApi->RegisterSpi(&sh);
// Register to required depth market data topic
pMduserApi-> SubscribeMarketDataTopic (1001, TERT_RESUME);
// Set the timeout for heartbeat
pMduserApi->SetHeartbeatTimeout(19);
// Set the Exchange FEP NameServer address
pMduserApi->RegisterNameServer("tcp://192.168.1.1:17011");

// Starts connection with market data FEP of the Trading System
pMduserApi->Init();
// Wait for API instance to exit
pMduserApi->Join();

return 0;
}

Trading API & Market Data API Interface Specifications v2.00

168

Part IV Appendix

1. Error ID List

Error
number

Error message Reasons for error

-1 Authentication failed Unable to find the authorization ID corresponding to the trading terminal
or the authorization ID does not match

1

Invalid session or topic does
not exist

Subscribed topic does not exist, the number of subscribed topics exceeds
the upper limit, or the user lacks the corresponding subscription
permission

Not Login User hasn’t logged in yet

Too High FTD Version FTD version too high

Unrecognized ftd tid FTD message header error

2 Contract cannot be found Contract not found during operations

3 Member cannot be found Member cannot be found in each operation

4 Client cannot be found Client cannot be found in each operation

6 Incorrect Order field Illegal field value was found on the order when inserting the order (out-
of-range of the enumerated value)

Forced closing-out reasons was set in non-forced closing-out order when
inserting the order

7 Erroneous quote field Illegal field value was found in the quote when inserting the quote (out-
of-range of the enumerated value)

8 Incorrect field in order
operation

Illegal field value was found in the order operation at the time of order
operation (out-of-range of the enumerated value)

Fields in the order derived from a quote operation are invalid (e.g., price
not a floating-point number or outside the valid range)

9 Incorrect field in quote
operation

Invalid field values detected during a quote operation (enumeration
value out of range, or operation flag set to modify or suspend)

12 Duplicate order Duplicate local order ID detected when inserting an order

13 Duplicate quote Local quoto number was duplicate when inserting quote

15 Client didn’t open an account
at this member

It was fount during each operation that the designated client didn’t open
an account at the designated member

16 IOC to be conducted in
continuous trade session.

Attempting to insert an IOC order outside continuous trading phase

17 GFA to be conducted in call
auction session

Attempting to insert a GFA order outside the call auction phase

19 Quantity restriction shall be
put on IOC

It was found in inserting the order with a quantity restriction of non-
arbitrary quantity that time conditions are not IOC

20 GTD order had expired It was found in inserting the GTD order that GTD data had expired

21 The Min. number exceeds the
number of order

It was found in inserting the order with a Min. number requirement that
the Min. number exceeds the number of order

Trading API & Market Data API Interface Specifications v2.00

169

22 The Exchange’s data is not in
the synchronized state

It was found during operation of each business that the Exchange’s data
is not in the synchronized state

23 The settlement group’s data is
not in the synchronized date

It was found during operation of each business that the settlement
group’s data is not in the synchronized state

24 Order cannot be found It was found during order operation that order to be operated cannot be
found

25 Quote cannot be found It was found during quote operation that quote to be operated cannot be
found

While inserting orders/quotes, contract trading status is not continuous
trading, call auction order entry, or call auction balancing

26 This operation is prohibited
by current state

During order/quote operations,
for activation, contract trading status is not continuous trading, call

auction order entry, or call auction balancing;
For other operations, contract trading status is not continuous

trading or call auction order entry
During option exercise/abandonment insertion or operations, or option
self-hedge update/operations, contract trading status is not continuous
trading or trade processing state
During quote demand insertion, contract is not tradable or not in
continuous trading status

28 Order already fully filled During order/quote operations, the order has already been fully filled
29 Order already canceled During order/quote operations, the order has already been canceled
30 Not enough quantity to

modify
Remaining quantity after modifying order would be less than 0

31 The client’s open interest is
insufficient at the time of
closing-out

It was found during each operation that may cause closing out that
client’s open interest is insufficient

32 Exceeding client’s position
limit

It was found during each operation that is likely to open a position that it
has exceeded client’s speculative position

33 Insufficient member position
for closing

During operations potentially resulting in position closing, member’s
position is insufficient

34 Exceeding member’s position
limit

It was found during each operation that is likely to open a position that it
has exceeded member’s position limit

35 Account cannot be found It was found during each operation that the account shall be used for
such operation cannot be found

36 Inadequate fund It was found during each operation that there is no sufficient fund in the
account

37 Invalid quantity When inserting orders, performing order operations, inserting quotes,
entering option exercise, submitting option abandonment, or updating
option self-hedge, the quantity is not a positive integer multiple of the
minimum order quantity or exceeds the maximum

45 The settlement group’s
initialization state is not
correct

Trading System is not fully initialized

48 Price not a multiple of
minimum price fluctuation

It was found during each operation that price is not the integral mutiple
of the contract’s tick size

49 Price exceeds the upward
limit

It was found during each operation that the price is higher than the
contract’s upward price limit

50 Price exceeds the downward
limit

It was found during each operation that the price is lower than the
contract’s downward price limit

51 Not authorized to trade During operations, member, client, or user lacks trading permissions for
the specified contract

Trading API & Market Data API Interface Specifications v2.00

170

52 Only can close out position During operations that may open a position, member, client, or user only
has permission for closing positions on the specified contract

53 No such trading role During order insertion, quote insertion, option self-hedge
updates/operations, member does not hold the corresponding client’s
trading role for the specified contract

54 Session Not Found Session not found during operations
57 Operation shall not be

conducted by other members
It was found during each operation that user conduct operation on behalf
member to whom he is not subordinate

58 Unmatched user It was found during each operation that user for operation doesn’t match
with user for dialogue

59 duplicate login by user Duplicate login detected from different IP addresses by the same user
60 Incorrect username or

password
It was found during user’s login or password modification that username
cannot be found or password is incorrect

62 User is not active During user login or password modification, user lacks permission for
login, trading, or password modification

64 User doesn’t belong to this
member

It was found during user’s login that user doesn’t belong to the
designated member

65 Incorrect IP address of login It was found during user’s login that user’ IP address is illegal
66 User hasn’t logged in yet During logout or password modification, user has not yet logged in
67 User not logged in under the

specified account
User logging out differs from user who logged in

68 User hasn’t logged in yet User not logged in under the specified member during logout or
password modification

70 Quote has been canceled It was found during quote operation that quote has been canceled
71 Cannot operate on derived

orders
During order operations, user attempts to operate on derived orders

72 Opening positions not
allowed for natural persons

In the delivery month, natural person type clients initiating open
positions or performing activation or modification operations on open
position orders

75 Front-end inactive Trading System front-end inactive
76 Order has been suspended It was found during suspension of order that order has already been

suspended
77 Order has been activated It was found during activation of order that order has already been

activate
78 Date is not set on GTD order It was found in inserting GTD order that GTD date hasn’t been

designated
79 Unsupported order type It was found in inserting various orders that this trade at this moment

doesn’t support this order type
80 User is not authorized to do

so
User lacks permission for the requested operation

83 Stop-loss order is used for
continuous trade only

Attempting to insert or operate on stop orders outside continuous trading
phase

84 Stop-loss order is required to
be IOC or GFD

It was found in inserting stop-loss order that time condition is neither
IOC nor GFD

88 Target user to be operated on
not found

User for quote demand not found during quote operation

89 Incorrect option exercise field Invalid field detected in option exercise insertion/operation (enumeration
value out of range)

90 Incorrect field in option
exercise operation

Illegal field value was found in option exercise operation when operating
declaration (out-of-range of the enumerated value)

91 Duplicate option exercise At the time of inserting option exercise, local option exercise number is
duplicate

92 Option exercise has been
canceled

It was found during option exercise operation that declaration has
already been canceled

Trading API & Market Data API Interface Specifications v2.00

171

93 Option exercise cannot be
found

It was found during option exercise operation that to-be-operated
declaration cannot be found

94 Option exercise can only be
used for option

It was found in inserting the option exercise that the contract is non-
option contract

95 The stop-loss price shall be
specified on stop-loss order

No stop price specified during stop order insertion/operation

96 Insufficient hedge quota During hedge orders or quote insertion, client’s hedge quota is
insufficient

98 Forced liquidation orders
must be used by
administrators

Non-administrator user submitted a forced liquidation order

99 Operation cannot be
conducted by other users

Unauthorized user attempting to operate on orders/quotes inserted by
another user of the same member

100 Incorrect user type User identified as a market data user during login
101 Clearing members are not

allowed to trade
Attempt to perform trading-related operations using a settlement
member account

102 Corresponding clearing
member not found

Settlement member not found for the specified member during
operations

103 Hedge position on that day
cannot be closed out

Attempt to insert the order for closing out today’s position into hedge
position

106 Duplicate session Two login attempts issued in the same session
114 The best price orders are

unable to queue
It was found in inserting the best price order that time condition is not
IOC

121 Erroneous option
abandonment field

Invalid fields found during option abandonment insertion/operation

122 Erroneous option
abandonment operation field

Illegal field value was found in the option abandonment at the time of
option abandonment operation

123 Duplicate option
abandonment

Duplicate local option abandonment ID during insertion

124 Option abandonment
canceled

Option abandonment has been canceled at the time of option
abandonment operation

125 Option abandonment cannot
be found

Option abandonment cannot be found at the time of option abandonment
operation

126 Option abandonment can only
be used in futures option

The contract is non-option contract when inserting the option
abandonment

127 Not in declaration period Option exercise is not in definitive period when insert or option
abandonment

128 Only holders of long
positions can enjoy execution
waiver

Option sellers are not allowed to enjoy execution waiver

129 Option exercise or
abandonment cannot be open
position

Flag of open or closing position is open position when inserting option
exercise or abandonment

131 Exceeded client’s intraday
contract opening limit

Client’s cumulative intraday open volume on a contract exceeds the limit

132 Exceeded client’s per-second
order limit for the product

Number of client orders on a product within one second exceeds the
limit

133 Exceeded client’s per-second
cancel limit for the product

Number of client cancellations on a product within one second exceeds
the limit

134 API validation failed Non-official API library used
135 User authentication failed Developer software not certified by the exchange
136 User has no permission for

direct front-end connection
User required to obtain front-end addresses through FENS server used
direct connection mode

137 Option self-hedge field error Option self-hedge update contains invalid field values (enumeration
value out of range)

Trading API & Market Data API Interface Specifications v2.00

172

138 Option self-hedge operation
field error

Invalid field detected in option self-hedge operation (enumeration value
out of range)

139 Duplicate option self-hedge
update

Duplicate local option self-hedge ID in the option self-hedge update

140 Option self-hedge update has
been canceled

Targeted option self-hedge update already canceled

141 Option self-hedge update is
only applicable to options

The contract in the option self-hedge update is not an option contract

142 Option self-hedge not found Option self-hedge to be operated on cannot be found
143 Option self-hedge operation

must be deletion
Option self-hedge operation type error

144 This client’s SelfCloseFlag
cannot be reserved option
position

SelfCloseFlag in option self-hedge update does not match client type

145 This client’s SelfCloseFlag
cannot be self-hedge option
position

SelfCloseFlag in option self-hedge update does not match client type

146 Only holders of long
positions can exercise

Only option buyers can submit option exercise insertion requests

147 User’s new password does
not meet requirements (at
least 8 characters, must
include digits, uppercase and
lowercase letters)

New password must meet complexity requirements during modification
(minimum 8 characters with digits, uppercase and lowercase letters)

148 Market price is within a
reasonable spread range, and
quote request is unnecessary

If market price is within a reasonable spread, the client’s quote request
will not be sent to market makers, namely, the client’s quote request is
meaningless

149 Option abandonment
applications can only be
submitted on option
expiration day

Option abandonment events for an option can only be submitted on the
option’s expiry date

150 Proprietary member has not
authenticated or
authentication failed before
login

Proprietary members must complete terminal authentication before login

151 Version verification failed API version verification failed
153 Market orders must be GFD

or IOC orders
Validity type of market order is neither IOC nor GFD during insertion

154 Market orders must be
entered during continuous
trading

Contract status is not in continuous trading phase during market order
insertion

155 Market orders are supported
only for futures and options

Product type is neither futures nor options during market order insertion

997 Api authentication failure Illegal API access
Api crypt info failure API encryption information query failed

998 Query frequency is too high Query frequency is too high
999 The last query result is on

way
There are pending query response data yet to be sent

1005 No record During various operations, the record corresponding to the contract is
missing

2. Enumeration Value List

Trading API & Market Data API Interface Specifications v2.00

173

Serial
No.

Description of
enumeration

Prefix of
enumera-

tion
Name of enumeration Code description Code name

Code
No.

1 Trading role ER TradingRole
Broker Broker 1
Proprietary trading Host 2

2 Product type PC ProductClass

Futures Futures 1
Option Options 2
Portfolio Combination 3
Spot Spot 4
EFP EFP 5
Settlement price
trading; trading at
settlement

TAS 6

Arbitrage Spread 7

3 Option type OT OptionsType
Non-option NotOptions 0
Bullish (call) CallOptions 1
Bearish (put) PutOptions 2

4
Trading status
of contract

IS InstrumentStatus

Pre-opening BeforeTrading 0
Non-trading NoTrading 1
Continuous trade Continous 2
Call autction order AuctionOrdering 3
Call autction
balancing

AuctionBalance 4

Matching of call
auction

AuctionMatch 5

Close Closed 6
Transaction
processing

TransactionProcessin
g

7

5
Buy-sell
direction

D Direction
Bid Buy 0
Ask Sell 1

6
Type of open

interest
PT PositionType

Net position Net 1
Gross position Gross 2

7
Direction of
long and short
open interest

PD PosiDirection
Net Net 1
Long Long 2
Short Short 3

8 Hedge flag HF HedgeFlag
General Speculation 1
Hedge Hedge 3
none None N

9 Type of client CT ClientType
Natural person Person 0
Legal person Company 1
Investment fund Fund 2

10

Reasons for
contract to
enter the

trading status

IER InstStatusEnterReason

Auto-switch Automatic 1
Manual switch Manual 2
Fusing Fuse 3
Fuse mannually FuseManual 4

11
Conditions of
order price

OPT OrderPriceType
Arbitrary price AnyPrice 1
Price limit LimitPrice 2
Best price BestPrice 3

12 Offset flag OF OffsetFlag

Position opening Open 0
Closing-out of
position

Close 1

Forced closing-out ForceClose 2
Closing out today’s
position

CloseToday 3

Trading API & Market Data API Interface Specifications v2.00

174

Serial
No.

Description of
enumeration

Prefix of
enumera-

tion
Name of enumeration Code description Code name

Code
No.

Closing out
yesterday’s
position

CloseYesterday 4

none None N

13
Reasons for

forced closing-
out

FCC ForceCloseReason

Non-forced closing
out

NotForceClose 0

Insufficient fund LackDeposit 1
Client exceeded the
position limit

ClientOverPositionLi
mit

2

Member exceeded
the position limit

MemberOverPosition
Limit

3

Position is not the
integral multiple

NotMultiple 4

Market abuse Violation 5
Others Other 6
Person near the
delivery day

PersonDeliv 7

Hedge volume over
position limit

HedgeOverPositio
nLimit

8

14 Status of order OST OrderStatus

Fulfilled AllTraded 0
Part of transaction
is still in the queue

PartTradedQueueing 1

Part of transaction
is not in the queue

PartTradedNotQueue
ing

2

The unfulfilled is
still in the queue

NoTradeQueueing 3

The unfulfilled is
not in the queue

NoTradeNotQueuei
ng

4

Order cancellation Canceled 5

15 Type of order ORDT OrderType

Normal Normal 0
Quote derivatives DeriveFromQuote 1
Portfolio
derivatives

DeriveFromCombina
tion

2

16
Type of valid

period
TC TimeCondition

Immediate or
cancel order

IOC 1

Good for this
session

GFS 2

Good for the day GFD 3
Good till date GTD 4
Good till canceled GTC 5
Good for call
auction

GFA 6

17 Volume type VC VolumeCondition
Any quantity AV 1
The Min. quantity MV 2
Total number CV 3

18
Trigger

conditions
CC ContingentCondition

Immediately Immediately 1
Stop-loss Touch 2

19 Operation flag AF ActionFlag

Deletion Delete 0
Suspension Suspend 1
Activation Active 2
Modification Modify 3

Trading API & Market Data API Interface Specifications v2.00

175

Serial
No.

Description of
enumeration

Prefix of
enumera-

tion
Name of enumeration Code description Code name

Code
No.

20 Source of orde OSRC OrderSource
From participants Participant 0
From administrator Administrator 1

21
Transaction

type
TRDT TradeType

Common
transaction

Common 0

Option execution OptionsExecution 1
Transaction of
OTC

OTC 2

Transaction of EFP
derivatives

EFPDerived 3

Transaction of
portfolio
derivatives

CombinationDerived 4

Block trade
execution

BlockTrade 5

Arbitrage-derived
execution

SpreadDerived 6

22
Source of
transaction

price
PSRC PriceSource

Previous
transaction price

LastPrice 0

Bid price Buy 1
Ask price Sell 2
Derived price Imply 3

23
Execution
result

OER ExecResult

Not executed NoExec n
Already canceled Canceled c
Execution sucessful OK 0
Position of option
is inadequate

NoPosition 1

Fund is inadequate NoDeposit 2
Member doesn’t
exist

NoParticipant 3

Client doesn’t exist NoClient 4
Contract doesn’t
exist

NoInstrument 6

No authorization to
execute

NoRight 7

Unreasonable
quantity

InvalidVolume 8

No adequate
historical
transaction

NoEnoughHistoryTra
de

9

24

Whether to
keep the

position mark
after the option
is exercised

EOPF ExecOrderPositionFlag

Reserved Reserve 0

Not reserved UnReserve 1

25

Whether
position is
closed

automatically
after option
exercrised

EOCF ExecOrderCloseFlag

Close position
automatically

AutoClose 0

Not closed NotToClose 1

26
Whether option
exercise is of

OSCF OptSelfCloseFlag
Self-hedge option
position

CloseSelfOptionPosit
ion

0

Trading API & Market Data API Interface Specifications v2.00

176

Serial
No.

Description of
enumeration

Prefix of
enumera-

tion
Name of enumeration Code description Code name

Code
No.

self-hedge type Retained option
position

ReserveOptionPositi
on

1

Self-hedge futures
position generated
after option seller
exercise

SellCloseSelfFutureP
osition

2

3. Data Type List

Name of data type Basic data type Description of data type

TShfeFtdcErrorIDType int Error ID

TShfeFtdcPriorityType int Priority

TShfeFtdcSettlementIDType int Settlement number

TShfeFtdcMonthCountType int Number of month

TShfeFtdcTradingSegmentSNType int numberof trading sessions

TShfeFtdcVolumeType int Quantity

TShfeFtdcTimeSortIDType int Sequence numberof queue by time

TShfeFtdcSequenceNoType int Sequence number

TShfeFtdcBulletinIDType int Bulletin number

TShfeFtdcMillisecType int Time (millisecond)

TShfeFtdcVolumeMultipleType int Contract multiplier

TShfeFtdcParticipantIDType char[11] Member ID

TShfeFtdcUserIDType char[16] Transaction user’s ID

TShfeFtdcPasswordType char[41] Password

TShfeFtdcClientIDType char[11] Client ID

TShfeFtdcInstrumentIDType char[31] Contract ID

TShfeFtdcProductIDType char[9] Product ID

TShfeFtdcDateType char[9] Date

TShfeFtdcTimeType char[9] Time

TShfeFtdcInstrumentNameType char[21] Contract name

TShfeFtdcProductGroupIDType char[9] Product suite’s ID

TShfeFtdcMarketIDType char[9] Market ID

TShfeFtdcSettlementGroupIDType char[9] Settlement group’s ID

TShfeFtdcOrderSysIDType char[13] Order number

TShfeFtdcExecOrderSysIDType char[13] System number of option exercise

TShfeFtdcQuoteSysIDType char[13] Quoto number

TShfeFtdcTradeIDType char[13] Transaction number

Trading API & Market Data API Interface Specifications v2.00

177

Name of data type Basic data type Description of data type

TShfeFtdcOrderLocalIDType char[13] Local order number

TShfeFtdcComeFromType char[21] Source of message

TShfeFtdcAccountIDType char[13] Fund account

TShfeFtdcNewsTypeType char[3] Bulletin type

TShfeFtdcAdvanceMonthType char[4] Month in advance

TShfeFtdcIPAddressType char[16] IP address

TShfeFtdcProductInfoType char[41] Product information

TShfeFtdcProtocolInfoType char[41] Protocol information

TShfeFtdcBusinessUnitType char[21] Business unit

TShfeFtdcTradingSystemNameType char[61] Name of Trading System

TShfeFtdcTradingRoleType char Trading role

TShfeFtdcProductClassType char Product type

TShfeFtdcOptionsTypeType char Option type

TShfeFtdcInstrumentStatusType char Trading status of contract

TShfeFtdcDirectionType char Buy-sell direction

TShfeFtdcPositionTypeType char Type of open interest

TShfeFtdcPosiDirectionType char Direction of long and short open interest

TShfeFtdcHedgeFlagType char Hedge flag

TShfeFtdcClientTypeType char Type of client

TShfeFtdcInstStatusEnterReasonType char
Reasons for contract to enter the trading
status

TShfeFtdcOrderPriceTypeType char Conditions of order price

TShfeFtdcOffsetFlagType char Offset flag

TShfeFtdcForceCloseReasonType char Reasons for forced closing-out

TShfeFtdcOrderStatusType char Status of order

TShfeFtdcOrderTypeType char Type of order

TShfeFtdcTimeConditionType char Type of valid period

TShfeFtdcVolumeConditionType char Volume type

TShfeFtdcContingentConditionType char Trigger conditions

TShfeFtdcActionFlagType char Operation flag

TShfeFtdcOrderSourceType char Source of order

TShfeFtdcTradeTypeType char Transaction type

TShfeFtdcPriceSourceType char Source of transaction price

TShfeFtdcExecResultType char Execution result

TShfeFtdcYearType int Year

TShfeFtdcMonthType int Month

Trading API & Market Data API Interface Specifications v2.00

178

Name of data type Basic data type Description of data type

TShfeFtdcBoolType int Bool type

TShfeFtdcPriceType double Price

TShfeFtdcUnderlyingMultipleType double Contract multiplier for basic commodity

TShfeFtdcCombOffsetFlagType char[5] Combination offset flag

TShfeFtdcCombHedgeFlagType char[5] Combination hedge flag

TShfeFtdcRatioType double Ratio

TShfeFtdcMoneyType double funds

TShfeFtdcLargeVolumeType double Large quantity

TShfeFtdcNewsUrgencyType char Urgency

TShfeFtdcSequenceSeriesType short Serial number in sequence

TShfeFtdcErrorMsgType char[81] Error message

TShfeFtdcAbstractType char[81] Message digest

TShfeFtdcContentType char[501] Message body

TShfeFtdcURLLinkType char[201] WEB address

TShfeFtdcIdentifiedCardNoType char[51] Certificate number

TShfeFtdcIdentifiedCardNoV1Type char[21] Original certificate number

TShfeFtdcPartyNameType char[81] Name of party involved

TShfeFtdcIdCardTypeType char[16] Type of certificate

TShfeFtdcDataCenterIDType int Datacenter ID

TShfeFtdcBusinessLocalIDType int Local business ID

TShfeFtdcCurrencyIDType char[4] Currency ID

TShfeFtdcRateUnitType int Exchange Rate Unit Type

TShfeFtdcExRatePriceType double Exchange Rate Price

TShfeFtdcExecOrderPositionFlagType char
Flag indicating whether to retain the futures
position after option exercise

TShfeFtdcExecOrderCloseFlagType char
Whether the futures position generated from
option exercise is self-hedge

TShfeFtdcMacAddressType char[21] MAC address information

TShfeFtdcOptionSelfCloseSysIDType char[13] Option self-hedge system ID

TShfeFtdcOptSelfCloseFlagType char
Whether the position exercised by the option
is self-hedge

TShfeFtdcAuthIDType char[17]
Terminal authentication authorization ID
type

4. API Return Value List

Return value Return value meaning
0 Success

Trading API & Market Data API Interface Specifications v2.00

179

-1 Not logged in
-2 Exceeded in-transit flow control
-3 Exceeded request flow control
-4 File not found or file read/write failure
-5 Already logged in or duplicate call
-6 Mandatory field is empty
-7 Authentication enabled but authentication failed
-8 Exceeded maximum number of items
-9 Not initialized
-10 Already initialized
-11 Duplicate ID
-12 Not yet connected to the front-end
-13 Member ID mismatch
-14 User ID mismatch

	Part I Introduction to NGES Trading System Interfa
	1. Introduction
	1.1. Background
	1.2. TraderAPI Overview
	1.3. MduserAPI Overview
	1.4. Platforms Supported by TraderAPI/MduserAPI
	1.5. Contact
	1.6. Version History
	1.6.1. Version v2.00

	2. FTD Architecture
	2.1. Communication Mode
	2.2. Data Flows

	3. Interface Mode
	3.1. TraderAPI Interface
	3.1.1. Dialog Stream and Query Stream Programming
	3.1.2. Private Stream Programming Interface
	3.1.3. Public Stream Programming Interface

	3.2. MduserAPI Interface
	3.2.1. Dialog Stream Programming Interface
	3.2.2. Market Data Stream Programming Interface

	4. Operating Mode
	4.1. Workflow
	4.1.1. Initialization Phase
	4.1.2. Function Calling Phase

	4.2. Working Thread
	4.3. Connection with the Trading System
	4.4. Interaction Between TraderAPI and the Trading
	4.5. Interaction Between MduserAPI and the Market
	4.6. Local Files
	4.7. Request and Response Log Files
	4.8. Subscription Methods for Reliable Data Stream
	4.8.1. Re-Transmission Sequence ID Maintained by A
	4.8.2. Re-Transmission Sequence ID Managed by Memb

	4.9. Heartbeat Mechanism
	4.10. Disaster Recovery Interface

	Part II TraderAPI Reference Manual
	1. Categories of TraderAPI Interfaces
	1.1. Management Interfaces
	1.2. Service Interfaces

	2. TraderAPI Interface Description
	2.1. CShfeFtdcTraderSpiInterface
	2.1.1. OnFrontConnected Method
	2.1.2. OnFrontDisconnected Method
	2.1.3. OnHeartBeatWarning Method
	2.1.4. OnPackageStart Method
	2.1.5. OnPackageEnd Method
	2.1.6. OnRspUserLogin Method
	2.1.7. OnRspUserLogout Method
	2.1.8. OnRspUserPasswordUpdate Method
	2.1.9. OnRspSubscribeTopic Method
	2.1.10. OnRspQryTopic Method
	2.1.11. OnRspError Method
	2.1.12. OnRspOrderInsert Method
	2.1.13. OnRspOrderAction Method
	2.1.14. OnRspQuoteInsert Method
	2.1.15. OnRspQuoteAction Method
	2.1.16. OnRspExecOrderInsert Method
	2.1.17. OnRspExecOrderAction Method
	2.1.18. OnRspQryPartAccount Method
	2.1.19. OnRspQryOrder Method
	2.1.20. OnRspQryQuote Method
	2.1.21. OnRspQryTrade Method
	2.1.22. OnRspQryClient Method
	2.1.23. OnRspQryPartPosition Method
	2.1.24. OnRspQryClientPosition Method
	2.1.25. OnRspQryInstrument Method
	2.1.26. OnRspQryInstrumentStatus Method
	2.1.27. OnRspQryBulletin Method
	2.1.28. OnRspQryMarketData Method
	2.1.29. OnRspQryHedgeVolume Method
	2.1.30. OnRtnTrade Method
	2.1.31. OnRtnOrder Method
	2.1.32. OnRtnQuote Method
	2.1.33. OnRtnExecOrder Method
	2.1.34. OnRtnInstrumentStatus Method
	2.1.35. OnRtnInsInstrument Method
	2.1.36. OnRtnBulletin Method
	2.1.37. OnRtnFlowMessageCancel Method
	2.1.38. OnErrRtnOrderInsert Method
	2.1.39. OnErrRtnOrderAction Method
	2.1.40. OnErrRtnQuoteInsert Method
	2.1.41. OnErrRtnQuoteAction Method
	2.1.42. OnErrRtnExecOrderInsert Method
	2.1.43. OnErrRtnExecOrderAction Method
	2.1.44. OnRspQryExecOrder Method
	2.1.45. OnRspQryExchangeRate Method
	2.1.46. OnRspAbandonExecOrderInsert Method
	2.1.47. OnRspAbandonExecOrderAction Method
	2.1.48. OnRspQryAbandonExecOrder Method
	2.1.49. OnRtnAbandonExecOrder Method
	2.1.50. OnErrRtnAbandonExecOrderInsert Method
	2.1.51. OnErrRtnAbandonExecOrderAction Method
	2.1.52. OnRspQuoteDemand Method
	2.1.53. OnRtnQuoteDemandNotify Method
	2.1.54. OnRspOptionSelfCloseUpdate Method
	2.1.55. OnErrRtnOptionSelfCloseUpdate Method
	2.1.56. OnRtnOptionSelfCloseUpdate Method
	2.1.57. OnRspOptionSelfCloseAction Method
	2.1.58. OnErrRtnOptionSelfCloseAction Method
	2.1.59. OnRspQryOptionSelfClose Method
	2.1.60. OnRspAuthenticate Method

	2.2. CShfeFtdcTraderApi Interfaces
	2.2.1. CreateFtdcTraderApi Method
	2.2.2. GetVersion Method
	2.2.3. Release Method
	2.2.4. Init Method
	2.2.5. Join Method
	2.2.6. GetTradingDay Method
	2.2.7. RegisterSpi Method
	2.2.8. RegisterFront Method
	2.2.9. RegisterNameServer Method
	2.2.10. SetHeartbeatTimeout Method
	2.2.11. OpenRequestLog Method
	2.2.12. OpenResponseLog Method
	2.2.13. SubscribePrivateTopic Method
	2.2.14. SubscribePublicTopic Method
	2.2.15. SubscribeUserTopic Method
	2.2.16. ReqUserLogin Method
	2.2.17. ReqUserLogout Method
	2.2.18. ReqUserPasswordUpdate Method
	2.2.19. ReqSubscribeTopic Method
	2.2.20. ReqQryTopic Method
	2.2.21. ReqOrderInsert Method
	2.2.22. ReqOrderAction Method
	2.2.23. ReqQuoteInsert Method
	2.2.24. ReqQuoteAction Method
	2.2.25. ReqExecOrderInsert Method
	2.2.26. ReqExecOrderAction Method
	2.2.27. ReqQryPartAccount Method
	2.2.28. ReqQryOrder Method
	2.2.29. ReqQryQuote Method
	2.2.30. ReqQryTrade Method
	2.2.31. ReqQryClient Method
	2.2.32. ReqQryPartPosition Method
	2.2.33. ReqQryClientPosition Method
	2.2.34. ReqQryInstrument Method
	2.2.35. ReqQryInstrumentStatus Method
	2.2.36. ReqQryMarketData Method
	2.2.37. ReqQryBulletin Method
	2.2.38. ReqQryHedgeVolume Method
	2.2.39. ReqQryExecOrder Method
	2.2.40. ReqQryExchangeRate Method
	2.2.41. ReqAbandonExecOrderInsert Method
	2.2.42. ReqAbandonExecOrderAction Method
	2.2.43. ReqQryAbandonExecOrder Method
	2.2.44. ReqQuoteDemand Method
	2.2.45. ReqOptionSelfCloseUpdate Method
	2.2.46. ReqOptionSelfCloseAction Method
	2.2.47. ReqQryOptionSelfClose Method
	2.2.48. ReqAuthenticate Method

	3. TraderAPI Interface Development Instances
	Part III MduserAPI Reference Manual
	1. Categories of MduserAPI Interfaces
	1.1. Management Interfaces
	1.2. Service Interfaces

	2. MduserAPI Interface Description
	2.1. CShfeFtdcMduserSpi Interface
	2.1.1. OnFrontConnected Method
	2.1.2. OnFrontDisconnected Method
	2.1.3. OnHeartBeatWarning Method
	2.1.4. OnPackageStart Method
	2.1.5. OnPackageEnd Method
	2.1.6. OnRspUserLogin Method
	2.1.7. OnRspUserLogout Method
	2.1.8. OnRspSubscribeTopic Method
	2.1.9. OnRspQryTopic Method
	2.1.10. OnRspError Method
	2.1.11. OnRtnDepthMarketData Method
	2.1.12. OnRtnFlowMessageCancel Method
	2.1.13. OnRspUserPasswordUpdate Method

	2.2. CShfeFtdcMduserApi Interfaces
	2.2.1. CreateFtdcMduserApi Method
	2.2.2. GetVersion Method
	2.2.3. Release Method
	2.2.4. Init Method
	2.2.5. Join Method
	2.2.6. GetTradingDay Method
	2.2.7. RegisterSpi Method
	2.2.8. RegisterFront Method
	2.2.9. RegisterNameServer Method
	2.2.10. SetHeartbeatTimeout Method
	2.2.11. OpenRequestLog Method
	2.2.12. OpenResponseLog Method
	2.2.13. SubscribeMarketDataTopic Method
	2.2.14. ReqUserLogin Method
	2.2.15. ReqUserLogout Method
	2.2.16. ReqSubscribeTopic Method
	2.2.17. ReqQryTopic Method
	2.2.18. ReqUserPasswordUpdate Method

	3. MduserAPI Interface Development Instance
	Part IV Appendix
	1. Error ID List
	2. Enumeration Value List
	3. Data Type List
	4. API Return Value List

